a2 United States Patent

Chamberlain et al.

US009176775B2

(10) Patent No.: US 9,176,775 B2
(45) Date of Patent: Nov. 3, 2015

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

INTELLIGENT DATA STORAGE AND
PROCESSING USING FPGA DEVICES

Applicant: IP Reservoir, LL.C, St. Louis, MO (US)

Inventors: Reger D. Chamberlain, St. Louis, MO
(US); Mark Allen Franklin, St. Louis,
MO (US); Ronald S. Indeck, St. Louis,
MO (US); Ron K. Cytron, St. Louis,
MO (US); Sharath R. Cholleti, Saint
Paul, MN (US)

Assignee: IP Reservoir, LL.C, St. Louis, MO (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/315,560
Filed: Jun. 26,2014

Prior Publication Data
US 2014/0310717 Al Oct. 16, 2014
Related U.S. Application Data

Continuation of application No. 13/344,986, filed on
Jan. 6, 2012, now Pat. No. 8,768,888, which is a
continuation of application No. 10/550,323, filed as
application No. PCT/US2004/016398 on May 21,
2004, now Pat. No. 8,095,508.

Provisional application No. 60/473,077, filed on May
23, 2003.

Int. Cl.
GO6F 17/30 (2006.01)
GO6F 9/48 (2006.01)
(Continued)
U.S. CL
CPCcccee. GO6F 9/4881 (2013.01); GO6F 3/061

(2013.01); GOGF 3/067 (2013.01); GOG6F
3/0655 (2013.01);

(Continued)

(58) Field of Classification Search
CPCcc..... GOG6F 17/30477;, GOGF 17/00; GOGF
17/30575
USPCccovueneee 707/636, 706, 707, 770, 796, 812,
709/214;711/103, 111, 112, 145,
713/189; 714/752;705/51; 380/37
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2,046,381 A 7/1936 Hicks et al.
3,082,402 A 3/1963 Scantlin

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0573991 12/1993
EP 0880088 11/1996
(Continued)
OTHER PUBLICATIONS

DeHon., “DPGA-coupled microprocessors commodity ICs for the
early 21st Century”, 1994, IEEE, 31-39.*

(Continued)

Primary Examiner — Jean B Fleurantin
(74) Attorney, Agent, or Firm — Thompson Coburn LLP;
Benjamin L. Volk, Jr.

(57) ABSTRACT

A re-configurable logic device such as a field programmable
gate array (FPGA) can be used to deploy a data processing
pipeline, the pipeline comprising a plurality of pipelined data
processing engines, the plurality of pipelined data processing
engines being configured to perform processing operations,
wherein the pipeline comprises a multi-functional pipeline,
and wherein the re-configurable logic device is further con-
figured to controllably activate or deactivate each of the pipe-
lined data processing engines in the pipeline in response to
control instructions and thereby define a function for the
pipeline, each pipeline function being the combined function-
ality of each activated pipelined data processing engine in the
pipeline.

21 Claims, 47 Drawing Sheets

US 9,176,775 B2

Page 2

(1)

(52)

(56)

Int. Cl1.
GO6F 21/60
GO6F 21/72
GO6F 21/76
GO6F 21/85
G06Q 40/06
GO6F 17/00
GO6F 3/06

U.S. CL
CPC

(2013.01)
(2013.01)
(2013.01)
(2013.01)
(2012.01)
(2006.01)
(2006.01)

GO6F 3/0683 (2013.01); GO6F 17/00

(2013.01); GOGF 17/30477 (2013.01); GO6F
21/602 (2013.01); GOGF 21/72 (2013.01);
GOGF 21/76 (2013.01); GOGF 21/85 (2013.01);
GO6Q 40/06 (2013.01); GOGF 3/0601
(2013.01); GO6F 2003/0692 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

3,296,597
3,573,747
3,581,072
3,601,808
3,611,314
3,729,712
3,824,375
3,848,235
3,906,455
4,081,607
4,298,898
4,300,193
4,314,356
4,385,393
4,412,287
4,464,718
4,550,436
4,674,044
4,823,306
4,903,201
4,941,178
5,023,910
5,038,284
5,050,075
5,063,507
5,077,665
5,101,353
5,101,424
5,126,936
5,140,692
5,161,103
5,163,131
5,179,626
5,226,165
5,243,655
5,249,292
5,255,136
5,258,908
5,263,156
5,265,065
5,267,148
5,270,922
5,297,032
5,313,560
5,315,634
5,319,776
5,327,521
5,339,411
5,347,634
5,371,794
5,375,055
5,388,259
5,396,253
5,404,411
5,404,488

B e B e e 0 > e B 0 0 > B 0 0 D B D B 0 0 D 0 0 D B B 0 0 0 B 0 0 e 0 D B B 0 0 D 0 0 D > D

1/1967
4/1971
5/1971
8/1971
10/1971
4/1973
7/1974
11/1974
9/1975
3/1978
11/1981
11/1981
2/1982
5/1983
10/1983
8/1984
10/1985
6/1987
4/1989
2/1990
7/1990
6/1991
8/1991
9/1991
11/1991
12/1991
3/1992
3/1992
6/1992
8/1992
11/1992
11/1992
1/1993
7/1993
9/1993
9/1993
10/1993
11/1993
11/1993
11/1993
11/1993
12/1993
3/1994
5/1994
5/1994
6/1994
7/1994
8/1994
9/1994
12/1994
12/1994
2/1995
3/1995
4/1995
4/1995

Scantlin et al.
Adams et al.
Nymeyer
Vlack
Pritchard, Ir. et al.
Glassman
Gross et al.
Lewis et al.
Houston et al.
Vitols et al.
Cardot
Bradley et al.
Scarbrough
Chaure et al.
Braddock, III
Dixon et al.
Freeman et al.
Kalmus et al.
Barbic et al.
Wagner
Chuang
Thomson
Kramer
Herman et al.
Lindsey et al.
Silverman et al.
Lupien et al.
Clayton et al.
Champion et al.
Morita
Kosaka et al.
Row et al.
Thomson
Martin

Wang
Chiappa
Machado et al.
Hartheimer et al.
Bowen et al.
Turtle

Kosaka et al.
Higgins
Trojan et al.
Maruoka et al.
Tanaka et al.
Hile et al.
Savic et al.
Heaton, Jr.
Herrell et al.
Diffie et al.
Togher et al.
Fleischman et al.
Chia

Banton et al.
Kerrigan et al.

5,418,951
5,421,028
5,432,822
5,440,723
5,461,712
5,463,701
5,465,353
5,481,735
5,488,725
5,497,317
5,497,488
5,500,793
5,517,642
5,544,352
5,546,578
5,596,569
5,619,574
5,651,125
5,684,980
5,687,297
5,701,464
5,704,060
5,712,942
5,721,898
5,740,244
5,740,466
5,774,835
5,774,839
5,781,772
5,781,921
5,802,290
5,805,832
5,809,483
5,813,000
5,819,273
5,819,290
5,826,075
5,845,266
5,857,176
5,864,738
5,870,730
5,873,071
5,884,286
5,886,701
5,905,974
5,913,211
5,930,753
5,943,421
5,943,429
5,963,923
5,978,801
5,987,432
5,991,881
5,995,963
6,006,264
6,016,483
6,023,755
6,023,760
6,028,939
6,044,407
6,058,391
6,061,662
6,064,739
6,067,569
6,070,172
6,073,160
6,084,584
6,105,067
6,134,551
6,138,176
RE36,946
6,147,890
6,147,976
6,169,969
6,173,270
6,173,276
6,175,874
6,178,494
6,195,024

o T e e e B 3 0 e B B 0 e B 0 0 0 B 0 0 D e 0 0 B B 0 0 D B B 0 e 0 B D B 0 0 D 0 0 e D B D 0 0 0 B D 0 B D B B 0 0 D B D

5/1995
5/1995
7/1995
8/1995
10/1995
10/1995
11/1995
1/1996
1/1996
3/1996
3/1996
3/1996
5/1996
8/1996
8/1996
1/1997
4/1997
7/1997
11/1997
11/1997
12/1997
12/1997
1/1998
2/1998
4/1998
4/1998
6/1998
6/1998
7/1998
7/1998
9/1998
9/1998
9/1998
9/1998
10/1998
10/1998
10/1998
12/1998
1/1999
1/1999
2/1999
2/1999
3/1999
3/1999
5/1999
6/1999
7/1999
8/1999
8/1999
10/1999
11/1999
11/1999
11/1999
11/1999
12/1999
1/2000
2/2000
2/2000
2/2000
3/2000
5/2000
5/2000
5/2000
5/2000
5/2000
6/2000
7/2000
8/2000
10/2000
10/2000
11/2000
11/2000
11/2000
1/2001
1/2001
1/2001
1/2001
1/2001
2/2001

Damashek
Swanson
Kaewell, Ir.
Arnold et al.
Chelstowski et al.
Kantner, Jr. et al.
Hull et al.
Mortensen et al.
Turtle et al.
Hawkins et al.
Akizawa et al.
Deming, Jr. et al.
Bezek et al.
Egger

Takada
Madonna et al.
Johnson et al.
Witt et al.
Casselman
Coonan et al.
Aucsmith

Del Monte
Jennings et al.
Beardsley et al.
Indeck et al.
Geldman et al.
Ozawa et al.
Shlomot
Wilkinson, III et al.
Nichols
Casselman
Brown et al.
Broka et al.
Furlani

Vora et al.
Fujita et al.
Bealkowski et al.
Lupien et al.
Ginsberg
Kessler et al.
Furuya et al.
Ferstenberg et al.
Daughtery, III
Chauvin et al.
Fraser et al.
Nitta
Potamianos et al.
Grabon

Hindel

Garber

Yuasa

Zusman et al.
Conklin et al.
Nanba et al.
Colby et al.
Rickard et al.
Casselman
Karttunen

Yin

Jones et al.
Gardner
Makivic

Davis

Khaki et al.
Lowe
Grantham et al.
Nabhi et al.
Batra

Aucsmith
McDonald et al.
Diffie et al.
Kawana et al.
Shand et al.
Cohen
Cristofich et al.
Kant et al.

Imai et al.
Casselman
Fallon

US 9,176,775 B2

Page 3

(56)

6,226,676
6,236,980
6,263,321
6,272,616
6,279,113
6,279,140
6,289,440
6,295,530
6,304,858
6,307,936
6,309,424
6,317,728
6,317,795
6,321,258
6,336,150
6,339,819
6,370,592
6,370,645
6,377,942
6,381,242
6,389,532
6,397,259
6,397,335
6,412,000
6,415,269
6,418,419
6,430,272
6,456,632
6,456,982
6,463,474
6,499,107
6,535,868
6,546,375
6,564,263
6,578,147
6,581,098
6,594,643
6,597,812
6,601,094
6,601,104
6,604,158
6,624,761
6,625,150
6,691,301
6,704,816
6,711,558
6,760,439
6,765,918
6,766,304
6,772,132
6,772,136
6,772,345
6,778,968
6,785,677
6,804,667
6,807,156
6,820,129
6,839,686
6,847,645
6,850,906
6,870,837
6,870,929
6,877,044
6,886,103
6,901,461
6,931,408
6,931,545
6,941,312
6,944,168
6,978,223
6,980,976
6,981,054
7,003,488
7,019,674
7,024,384

U.S. PATENT DOCUMENTS

Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
B2
Bl
Bl
Bl
Bl
B2
Bl
B2
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
B2
Bl
B2
B2
Bl
Bl
B2
B2
B2
Bl
B2
B2
B2

References Cited

5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
9/2001
9/2001
10/2001
10/2001
10/2001
11/2001
11/2001
11/2001
1/2002
1/2002
4/2002
4/2002
4/2002
4/2002
5/2002
5/2002
5/2002
6/2002
7/2002
7/2002
8/2002
9/2002
9/2002
10/2002
12/2002
3/2003
4/2003
5/2003
6/2003
6/2003
7/2003
7/2003
7/2003
7/2003
8/2003
9/2003
9/2003
2/2004
3/2004
3/2004
7/2004
7/2004
7/2004
8/2004
8/2004
8/2004
8/2004
8/2004
10/2004
10/2004
11/2004
1/2005
1/2005
2/2005
3/2005
3/2005
4/2005
4/2005
5/2005
8/2005
8/2005
9/2005
9/2005
12/2005
12/2005
12/2005
2/2006
3/2006
4/2006

Crump et al.
Reese
Daughtery, III
Fernando et al.
Vaidya

Slane
Casselman
Ritchie et al.
Mosler et al.
Ober et al.
Fallon

Kane

Malkin et al.
Stollfus et al.
Ellis et al.

Huppenthal et al.

Kumpf

Lee

Hinsley et al.
Maher, III et al.
Gupta et al.
Lincke et al.
Franczek et al.
Riddle et al.
Dinwoodie
Nieboer et al.
Maruyama et al.
Baum et al.
Pilipovic

Fuh et al.
Gleichauf et al.
Galeazzi et al.
Pang et al.
Bergman et al.
Shanklin et al.
Kumpf
Freeny, Jr.
Fallon et al.
Mentze et al.
Fallon

Fallon

Fallon

Yu

Bowen

Burke

Indeck et al.
Windirsch
Dixon et al.
Kemp, II et al.
Kemp, II et al.
Kant et al.
Shetty

Gulati
Fritchman
Martin

Veres et al.
Courey, Jr.
Galant

Potter et al.
Chadha et al.
Ho et al.
Greene

Lo etal.
Brustoloni et al.
Bennett
Adams et al.
Ta et al.
Hoffman et al.
Paatela et al.
Milliken
Alpha et al.
Krishna
Dunne et al.
Cadambi et al.
Daughtery, III

7,046,848
7,065,475
7,065,482
7,089,206
7,093,023
7,099,838
7,101,188
7,103,569
7,117,280
7,124,106
7,127,424
7,127,510
7,130,913
7,139,743
7,149,715
7,161,506
7,167,980
7,177,833
7,181,437
7,181,608
7,191,233
7,222,114
7,224,185
7,225,188
7,228,289
7,249,118
7,251,629
7,257,842
7,277,887
7,286,564
7,287,037
7,305,383
7,305,391
7,321,937
7,353,267
7,356,498
7,362,859
7,363,277
7,376,755
7,378,992
7,386,046
7,386,564
7,406,444
7,408,932
7,411,957
7,415,723
7,417,568
7,420,931
7,444,515
7,454,418
7,478,431
7,480,253
7,487,264
7,496,108
7,536,462
7,552,107
7,558,753
7,558,925
7,565,525
7,587,476
7,603,303
7,617,291
7,623,660
7,627,693
7,631,107
7,660,761
7,660,793
7,680,790
7,685,121
7,714,747
7,761,459
7,827,190
7,831,606
7,831,607
7,840,482
7,870,217
7,890,692
7,899,976
7,899,977

5/2006
6/2006
6/2006
8/2006
8/2006
8/2006
9/2006
9/2006
10/2006
10/2006
10/2006
10/2006
10/2006
11/2006
12/2006
1/2007
1/2007
2/2007
2/2007
2/2007
3/2007
5/2007
5/2007
5/2007
6/2007
7/2007
7/2007
8/2007
10/2007
10/2007
10/2007
12/2007
12/2007
1/2008
4/2008
4/2008
4/2008
4/2008
5/2008
5/2008
6/2008
6/2008
7/2008
8/2008
8/2008
8/2008
8/2008
9/2008
10/2008
11/2008
1/2009
1/2009
2/2009
2/2009
5/2009
6/2009
7/2009
7/2009
7/2009
9/2009
10/2009
11/2009
11/2009
12/2009
12/2009
2/2010
2/2010
3/2010
3/2010
5/2010
7/2010
11/2010
11/2010
11/2010
11/2010
1/2011
2/2011
3/2011
3/2011

Olcott
Brundobler
Shorey et al.
Martin
Lockwood et al.
Gastineau et al.
Summers et al.
Groveman et al.
Vasudevan
Stallaert et al.
Kemp, II et al.
Yoda et al.
Fallon

Indeck et al.
Browne et al.
Fallon

Chiu
Marynowski et al.
Indeck et al.
Fallon et al.
Miller

Chan et al.
Campbell et al.
Gai et al.
Brumfield et al.
Sandler et al.
Marynowski et al.
Barton et al.
Burrows et al.
Roberts

An et al.
Kubesh et al.
Wyschogrod et al.
Fallon
Cunningham et al.
Kaminsky et al.
Robertson et al.
Dutta et al.
Pandya

Fallon

Fallon et al.
Abdo et al.
Eng et al.
Kounavis et al.
Stacy et al.
Pandya

Fallon et al.
Nanda et al.
Dharmapurikar et al.
Wang
Nachenberg
Allan

Pandya

Biran et al.
Pandya

Indeck et al.
Neubert et al.
Bouchard et al.
Vorbach et al.
Sato

Kraus et al.
Fan et al.

Cory

Pandya

Pandya

Zhou et al.
Indeck et al.
Indeck et al.
Brown et al.
Fallon

Zhang et al.
Pandya

Pandya

Pandya

Singla et al.
Pandya

Pandya

Pandya

Pandya

US 9,176,775 B2

(56)

7,899,978
7,908,213
7,912,808
7,917,299
7,921,046
7,944,920
7,949,650
7,953,743
7,954,114
7,991,667
7,996,348
8,005,966
8,027,893
8,030,888
8,046,283
8,051,022
8,055,601
8,069,102
8,095,508
8,131,697
8,156,101
8,181,239
8,200,599
8,326,819
8,374,986
8,379,841
8,407,122
8,601,086
8,762,249
8,768,805
8,768,888
8,843,408
8,879,727
8,880,501
8,983,063
9,020,928
2001/0007127
2001/0013048
2001/0014093
2001/0033656
2001/0042040
2001/0047473
2001/0052038
2001/0056547
2002/0006196
2002/0010825
2002/0016773
2002/0019812
2002/0021802
2002/0023010
2002/0031125
2002/0041685
2002/0069370
2002/0069375
2002/0072893
2002/0080871
2002/0082967
2002/0095512
2002/0100029
2002/0101425
2002/0103663
2002/0105911
2002/0106078
2002/0112167
2002/0116508
2002/0129140
2002/0138376
2002/0143521
2002/0147670
2002/0150248
2002/0156998
2002/0162025
2002/0166063
2002/0169873
2002/0180742

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

3/2011
3/2011
3/2011
3/2011
4/2011
5/2011
5/2011
5/2011
5/2011
8/2011
8/2011
8/2011
9/2011
10/2011
10/2011
11/2011
11/2011
11/2011
1/2012
3/2012
4/2012
5/2012
6/2012
12/2012
2/2013
2/2013
3/2013
12/2013
6/2014
7/2014
7/2014
9/2014
11/2014
11/2014
3/2015
4/2015
7/2001
8/2001
8/2001
10/2001
11/2001
11/2001
12/2001
12/2001
1/2002
1/2002
2/2002
2/2002
2/2002
2/2002
3/2002
4/2002
6/2002
6/2002
6/2002
6/2002
6/2002
7/2002
7/2002
8/2002
8/2002
8/2002
8/2002
8/2002
8/2002
9/2002
9/2002
10/2002
10/2002
10/2002
10/2002
10/2002
11/2002
11/2002
12/2002

Pandya
Monroe et al.
Pandya
Buhler et al.
Parsons et al.
Pandya
Indeck et al.
Indeck et al.

Chamberlain et al.

Kraus et al.
Pandya
Pandya
Burrows et al.
Pandya et al.
Burns et al.
Pandya
Pandya
Indeck et al.

Chamberlain et al.

Indeck et al.
Indeck et al.
Pandya
Pandya
Indeck et al.
Indeck et al.
Taylor et al.
Parsons et al.
Pandya
Taylor et al.
Taylor et al.

Chamberlain et al.

Singla et al.
Taylor et al.
Indeck et al.
Taylor et al.
Indeck et al.
Staring

Imbert de Tremiolles et al.

Yoda et al.
Gligor et al.
Keith

Fallon

Fallon et al.
Dixon
Shimoyama et al.
Wilson
Ohkuma et al.
Board et al.
Muratani et al.
Rittmaster et al.
Sato

McLoone et al.
Mack

Bowen

Wilson

Fallon et al.
Kaminsky et al.
Rana et al.
Bowen

Hamid
Bankier et al.
Pruthi et al.

Qi et al.

Boneh et al.
Khan et al.
Peled et al.
Hinkle

Call

Lange
Kovacevic
Casselman
Sutton et al.
Lachman et al.
Zodnik

Hamid

2002/0181709
2002/0191784
2002/0199173
2003/0009411
2003/0009693
2003/0014521
2003/0014662
2003/0018630
2003/0023653
2003/0023876
2003/0028408
2003/0028690
2003/0028864
2003/0033234
2003/0033240
2003/0033450
2003/0033514
2003/0033588
2003/0033594
2003/0035547
2003/0037037
2003/0037321
2003/0039355
2003/0041129
2003/0043805
2003/0046668
2003/0051043
2003/0055658
2003/0055769
2003/0055770
2003/0055771
2003/0055777
2003/0059054
2003/0061409
2003/0065607
2003/0065943
2003/0068036
2003/0074177
2003/0074582
2003/0078865
2003/0079060
2003/0090397
2003/0093347
2003/0097481
2003/0099254
2003/0099352
2003/0105620
2003/0105721
2003/0108195
2003/0110229
2003/0115485
2003/0117971
2003/0120460
2003/0121010
2003/0126065
2003/0140337
2003/0149869
2003/0163715
2003/0169877
2003/0177253
2003/0184593
2003/0187662
2003/0191876
2003/0198345
2003/0208430
2003/0221013
2003/0233302
2004/0010612
2004/0015502
2004/0015633
2004/0019703
2004/0028047
2004/0034587
2004/0049596
2004/0054924
2004/0059666
2004/0064737
2004/0100977
2004/0105458

12/2002
12/2002
12/2002
1/2003
1/2003
1/2003
1/2003
1/2003
1/2003
1/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
2/2003
3/2003
3/2003
3/2003
3/2003
3/2003
3/2003
3/2003
3/2003
3/2003
3/2003
4/2003
4/2003
4/2003
4/2003
4/2003
4/2003
4/2003
5/2003
5/2003
5/2003
5/2003
5/2003
6/2003
6/2003
6/2003
6/2003
6/2003
6/2003
6/2003
6/2003
7/2003
7/2003
8/2003
8/2003
9/2003
9/2003
10/2003
10/2003
10/2003
10/2003
11/2003
11/2003
12/2003
1/2004
1/2004
1/2004
1/2004
2/2004
2/2004
3/2004
3/2004
3/2004
4/2004
5/2004
6/2004

Sorimachi et al.
Yup et al.
Bowen

Ram et al.
Brock et al.
Elson et al.
Gupta et al.
Indeck et al.
Dunlop et al.
Bardsley et al.
RuDusky
Appleby-Alis et al.
Bowen
RuDusky
Balson et al.
Appleby-Alis
Appleby-Allis et al.
Alexander
Bowen
Newton
Adams et al.
Bowen
McCanny et al.
Applcby-Allis
Graham et al.
Bowen
Wyschogrod et al.
RuDusky
RuDusky
RuDusky
RuDusky
Ginsberg

Hu et al.
RuDusky
Satchwell

Geis et al.
Macchetti et al.
Bowen

Patel et al.

Lee

Dunlop
Rasmussen
Gray

Richter
Richter
Luetal.
Bowen

Ginter et al.
Okada et al.
Kulig et al.
Milliken
Aubury
Aubury
Aubury

Eng et al.
Aubury
Gleichauf
‘Wong

Liuet al.
Schuehler et al.
Dunlop

Wilson

Fallon

Van Buer
Gershon
Lockwood et al.
Weber et al.
Pandya
Alexander et al.
Smith

Burton

Hou et al.
Amberson et al.
Schuehler et al.
Chuah et al.
Waelbroeck et al.
Milliken et al.
Suzuki et al.
Ishizuka

US 9,176,775 B2

Page 5
(56) References Cited 2008/0114725 A1 5/2008 Indeck et al.
2008/0114760 Al 5/2008 Indeck et al.
U.S. PATENT DOCUMENTS 2008/0126320 Al 5/2008 Indeck et al.
2008/0133453 Al 6/2008 Indeck et al.
2004/0111632 Al 6/2004 Halperin 2008/0133519 Al 6/2008 Indeck et al.
2004/0117645 Al 6/2004 Okuda et al. 2008/0243675 Al 10/2008 Parsons et al.
2004/0146164 Al 7/2004 Jonas et al. 2008/0253395 Al 10/2008 Pandya
2004/0162826 Al 8/2004 Wyschogrod et al. 2008/0260158 Al 10/2008 Chin et al.
2004/0165721 Al 8/2004 Sano etal. 2008/0275805 Al 11/2008 Hecht
2004/0177340 Al 9/2004 Hsu et al. 2009/0060197 Al 3/2009 Taylor et al.
2004/0186804 Al 9/2004 Chakraborty et al. 2009/0182683 Al 7/2009 Taylor et al.
2004/0186814 Al 9/2004 Chalermkraivuth et al. 2009/0262741 Al 10/2009 Jungck et al.
2004/0196905 Al 10/2004 Yamane et al. 2009/0287628 Al 11/2009 Indeck et al.
2004/0199448 Al 10/2004 Chalermkraivuth et al. 2010/0005036 Al 1/2010 Kraus et al.
2004/0205149 Al 10/2004 Dillon et al. 2010/0094858 Al 4/2010 Indeck et al.
2004/0208318 Al 10/2004 Henry et al. 2010/0174770 A1 7/2010 Pandya
2004/0218762 Al 11/2004 Le Saint et al. 2011/0040701 Al 2/2011 Singla et al.
2004/0228479 Al 11/2004 Crispin et al. 2011/0178911 Al 7/2011 Parsons et al.
2004/0255130 Al 12/2004 Henry et al. 2011/0178912 Al 7/2011 Parsons et al.
2005/0005145 Al 1/2005 Teixeira 2011/0178917 Al 7/2011 Parsons et al.
2005/0033672 Al 2/2005 Lasry etal. 2011/0178918 Al 7/2011 Parsons et al.
2005/0044344 Al 2/2005 Stevens 2011/0178919 Al 7/2011 Parsons et al.
2005/0080649 Al 4/2005 Alvarez et al. 2011/0178957 Al 7/2011 Parsons et al.
2005/0086520 Al 4/2005 Dharmapurikar et al. 2011/0179050 Al 7/2011 Parsons et al.
2005/0091142 Al 4/2005 Renton et al. 2011/0184844 Al 7/2011 Parsons et al.
2005/0097027 Al 5/2005 Kavanaugh 2011/0199243 Al 8/2011 Fallon et al.
2005/0108518 Al 5/2005 Pandya 2011/0231446 Al 9/2011 Bubhler et al.
2005/0131790 Al 6/2005 Benzschawel et al. 2011/0246353 Al 10/2011 Kraus et al.
2005/0135608 Al 6/2005 Zheng 2011/0252008 Al 10/2011 Chamberlain et al.
2005/0175010 Al 82005 Wilson et al. 2011/0291615 Al 12/2011 Pandya et al.
2005/0175175 Al 8/2005 Leech 2012/0109849 Al 5/2012 Chamberla!n etal.
2005/0187844 Al 8/2005 Chalermkraivuth et al. 2012/0110316 Al 52012 Chamberlain et al.
2005/0187845 Al 8/2005 Fklund et al. 2012/0116998 Al 5/2012 Indeck et al.
2005/0187846 Al 82005 Subbu etal. 2012/0117610 Al 52012 Pandya
2005/0187847 Al 8/2005 Bonissone et al. 2012/0130922 Al 5/2012 Indeck et al.
2005/0187848 Al 8/2005 Bonissone et al. 2012/0215801 Al 82012 Indeck et al.
2005/0187849 Al $/2005 Bollapragada et al. 2013/0007000 Al 1/2013 Indeck et al.
2005/0187974 Al 8/2005 Gong 2013/0018835 Al 1/2013 Pandya
2005/0195832 Al 9/2005 Dharmapurikar et al. 2013/0151458 Al 6/2013 Indeck et al.
2005/0197938 Al 9/2005 Davie et al. 2014/0180903 Al 6/2014 Parsons et al.
2005/0197939 Al 9/2005 Davie et al. 2014/0180904 Al 6/2014 Parsons et al.
2005/0197948 Al 9/2005 Davie et al. 2014/0180905 Al 6/2014 Parsons et al.
2005/0216384 Al 9/2005 Partlow et al. 2014/0181133 Al 6/2014 Parsons et al.
2005/0229254 Al 10/2005 Singh et al. 2014/0310148 Al 10/2014 Taylor et al.
2005/0243824 Al 11/2005 Abbazia et al. 2015/0023501 Al 1/2015 Taylor et al.
2005/0267836 Al 12/2005 Crosthwaite et al. 2015/0052148 Al 2/2015 Indeck et al.
2005/0283423 Al 12/2005 Moser et al. 2015/0055776 Al 2/2015 Taylor et al.
2006/0020536 Al 1/2006 Renton et al.
2006/0020715 Al 1/2006 Jung_ck FOREIGN PATENT DOCUMENTS
2006/0031154 Al 2/2006 Noviello et al.
2006/0031156 Al 2/2006 Noviello et al.
2006/0031263 Al 2/2006 Arrouye et al. Eg 8§§;g§§ A 1;;}332
2006/0036693 Al 2/2006 Hulten et al. EP 0911738 A 4/1999
2006/0059064 Al 3/2006 Glinberg et al. JP 57-137978 A 8/1982
2006/0059065 Al 3/2006 Glinberg et al. P 58-102378 A 6/1983
2006/0059068 Al 3/2006 Glinberg et al. P 02136900 A 5/1990
2006/0059213 Al 3/2006 Evoy P 05-101102 A 4/1993
2006/0143099 Al 6/2006 Partlow et al. P 05-217289 A 8/1993
2006/0294059 Al 12/2006 Chamberlain et al. P 09145544 A 6/1997
2007/0061594 Al 3/2007 Ginter et al. P 0-269930 10/1997
2007/0118453 Al 5/2007 Bauerschmidt et al. P 11316765 A 11/1999
2007/0174841 Al 7/2007 Chamberlain et al. P 2000286715 A 10/2000
2007/0237327 Al 10/2007 Taylor et al.. P 2000357176 12/2000
2007/0277036 Al 11/2007 Chamberlain et al. 1P 2001014239 1/2001
2007/0294157 Al 12/2007 Singla et al. 1P 2001217834 8/2001
2007/0297608 Al 12/2007 Jonas et al. P 2001268071 A 9/2001
2008/0086274 Al 4/2008 Chamberlain et al. JP 2001285283 A 10/2001
2008/0109413 Al 5/2008 Indeck et al. P 2001518724 10/2001

2008/0114724 Al 5/2008 Indeck et al. JP 2001357048 A 12/2001

US 9,176,775 B2
Page 6

(56) References Cited
FOREIGN PATENT DOCUMENTS

JP 2002101089 A 4/2002
JP 2002108910 A 4/2002
JP 2003122442 A 4/2003
WO 9010910 9/1990
WO 9409443 Al 4/1994
WO 9737735 10/1997
WO 9905814 2/1999
WO 9955052 10/1999
WO 0041136 Al 7/2000
WO 0122425 A 3/2001
WO 0139577 6/2001
WO 0161913 8/2001
WO 0180082 A2 10/2001
WO 0180558 10/2001
WO 02061525 8/2002
WO 02082271 10/2002
WO 03100650 4/2003
WO 03036845 5/2003
WO 03100662 12/2003
WO 03104943 A2 12/2003
WO 2004014065 A2 2/2004
WO 2004017604 2/2004
WO 2004042560 A 5/2004
WO 2004042561 A 5/2004
WO 2004042562 5/2004
WO 2004042574 A 5/2004
WO 2005017708 A 2/2005
WO 2005026925 3/2005
WO 2005048134 A 5/2005
WO 2005081855 A2 9/2005
WO 2005114339 A2 12/2005
WO 2006023948 3/2006
WO 2006060571 A2 6/2006
WO 2007079095 A2 7/2007
WO 2008073824 Al 6/2008
OTHER PUBLICATIONS

Mitra et al., An FPGA Implementation of Triangle Mesh Decompres-
sion, 2002, IEEE, 1-10.*

Villasenor et al., Configurable Computing Solutions for Automatic
Target Recognition—FPGAS for Custom Computing Machines,
1996, IEEE, 70-79.*

Compton et al., “Reconfigurable Computing: A Survey of Systems
and Software”, University of Washington, ACM Computing Surveys,
Jun. 2, 2002, pp. 171-210, vol. 34 No. 2, <http://www.idi.ntnu.no/
emner/td22/201 /reconfig.pdf>.

Office Action for CA Application 2759064 dated Oct. 10, 2014.
Office Action for CA Application 2836758 dated Sep. 18, 2014.
Office Action for EP Application 04753259.3 dated Jun. 25, 2014.
Office Action for EP Application 12165559.1 dated Jul. 7, 2014.
Yan et al., “Enhancing Collaborative Spam Detection with Bloom
Filters”, 2006, IEEE, pp. 414-425.

Yoshitani et al., “Performance Evaluation of Parallel Volume Ren-
dering Machine Re Volver/C40”, Study Report of Information Pro-
cessing Society, Mar. 5, 1999, pp. 79-84, vol. 99, No. 21.

Ziv et al., “A Universal Algorithm for Sequential Data Compression”,
IEEE Trans. Inform. Theory, IT-23(3): 337-343 (1997).

Ziv et al., “Compression of Individual Sequence via Variable-Rate
Coding”, IEEE Transactions on Information Theory, Sep. 1978, pp.
530-536, vol. IT-24, No. 5, Institute of Electrical and Electronics
Engineers, Washington, DC, USA.

U.S. Appl. No. 61/570,670, filed Dec. 14, 2011 (Taylor et al.).
Schuehler et al., “Architecture for a Hardware Based, TCP/IP Con-
tent Scanning System”, IEEE Micro, 24(1):62-69, Jan.-Feb. 2004,
USA.

Seki et al., “High Speed Computation of Shogi With FPGA”, Pro-
ceedings of 58th Convention Architecture, Software Science, Engi-
neering, Mar. 9, 1999, pp. 1-133-1-134.

Shah, “Understanding Network Processors”, Version 1.0, University
of California-Berkeley, Sep. 4, 2001.

Shalunov et al., “Bulk TCP Use and Performance on Internet 27,
ACM SIGCOMM Internet Measurement Workshop, 2001.

Shirazi et al.,, “Quantitative Analysis of FPGA-based Database
Searching”, Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, May 2001, pp. 85-96, vol. 28, No. 1/2,
Kluwer Academic Publishers, Dordrecht, NL.

Sidhu et al., “Fast Regular Expression Matching Using FPGAs”,
IEEE Symposium on Field Programmable Custom Computing
Machines (FCCM 2001), Apr. 2001.

Sidhu et al., “String Matching on Multicontext FPGAs Using Self-
Reconfiguration”, FPGA ’99: Proceedings of the 1999 ACM/SIGDA
7th International Symposium on Field Programmable Gate Arrays,
Feb. 1999, pp. 217-226.

Singh et al., “The EarlyBird System for Real-Time Detection on
Unknown Worms”, Technical report CS2003-0761, Aug. 2003.
Sourdis and Pnevmatikatos, “Fast, Large-Scale String Match for a
10Gbps FPGA-based Network Intrusion Detection System”, 13th
International Conference on Field Programmable Logic and Appli-
cations, 2003,

Steinbach et al., “A Comparison of Document Clustering Tech-
niques”, KDD Workshop on Text Mining, 2000.

Tau et al., “Transit Note #114: A First Generation DPGA Implemen-
tation”, Jan. 1995, 9 pages.

Taylor et al., “Dynamic Hardware Plugins (DHP): Exploiting
Reconfigurable Hardware for High-Performance Programmable
Routers”, Computer Networks, 38(3): 295-310 (16), Feb. 21, 2002,
and online at http://www.cc.gatech.edu/classes/ AY2007/
¢s8803hpc__fall/papers/phplugins.pdf.

Taylor et al., “Generalized RAD Module Interface Specification of
the Field Programmable Port Extender (FPX) Version 2, Washing-
ton University, Department of Computer Science, Technical Report,
Jul. 5, 2001, pp. 1-10.

Taylor et al., “Modular Design Techniques for the FPX”, Field Pro-
grammable Port Extender: Jan. 2002 Gigabit Workshop Tutorial,
Washington University, St. Louis, MO, Jan. 3-4, 2002.

Taylor et al., “Scalable Packet Classification using Distributed
Crossproducting of Field Labels”, Proceedings of IEEE Infocom,
Mar. 2005, pp. 1-12, vol. 20, No. 1.

Taylor, “Models, Algorithms, and Architectures for Scalable Packet
Classification”, doctoral thesis, Department of Computer Science
and Engineering, Washington University, St. Louis, MO, Aug. 2004,
pp. 1-201.

Thompson et al., “The CLUSTAL_X Windows Interface: Flexible
Strategies for Multiple Sequence Alignment Aided by Quality Analy-
sis Tools”, Nucleic Acids Research, 1997, vol. 25, No. 24, pp. 4876-
4882.

U.S. Appl. No. 61/421,545, filed Dec. 9, 2010 (Taylor et al.).
Villasenor et al, “Configurable Computing Solutions for Automatic
Target Recognition”, FPGAS for Custom Computing Machines,
1996, Proceedings, IEEE Symposium on Napa Valley, CA, Apr.
17-19, 1996, pp. 70-79, 1996 IEEE, Napa Valley, CA, Los Alamitos,
CA, USA.

Waldvogel et al., “Scalable High-Speed Prefix Matching”, ACM
Transactions on Computer Systems, Nov. 2001, pp. 440-482, vol. 19,
No. 4.

Ward et al., “Dynamically Reconfigurable Computing: A Novel
Computation Technology with Potential to Improve National Secu-
rity Capabilities”, May 15, 2003, A White Paper Prepared by Star
Bridge Systems, Inc. [retrieved Dec. 12, 2006]. Retrieved from the
Internet: <URL: http://www.starbridgesystems.com/resources/
whitepapers/Dynamically%20Reconfigurable%20Computing.pdf.
Weaver et al., “Very Fast Containment of Scanning Worms”, Proc.
USENIX Security Symposium 2004, San Diego, CA, Aug. 2004,
located at http://www.icsi.berkely.edu/~nweaver/containment/con-
tainment.pdf.

West et al., “An FPGA-Based Search Engine for Unstructured Data-
base”, Proc. of 2nd Workshop on Application Specific Processors,
Dec. 2003, San Diego, CA.

Madhusudan, “Design of a System for Real-Time Worm Detection”,
Hot Interconnects, pp. 77-83, Stanford, CA, Aug. 2004, found at
http://www.hoti.org/hoti12/program/papers/2004/paper4.2.pdf.
Niewczas et al., “A Pattern Matching Algorithm for Verification and
Analysis of Very Large IC Layouts”, ACM, Apr. 1998, pp. 129-134.

US 9,176,775 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Notice of Allowance for U.S. Appl. No. 11/932,652 dated Jan. 19,
2011.

Nunez et al, “The X-MatchLITE FPGA-Based Data Compressor”,
Euromicro Conference 1999, Proceedings, Italy, Sep. 8-10, 1999, pp.
126-132, Los Alamitos, CA.

Fernandez, “Template Matching of Binary Targets in Grey-Scale
Images: A Nonparametric Approach”, Pattern Recognition, 1997, pp.
1175-1182, vol. 30, No. 7.

FIPS 197, “Advanced Encryption Standard”, National Institute of
Standards and Technology (2001).

FIPS 46-2, “Data Encryption Standard”, revised version issued as
FIPS 46-3, National Institute of Standards Technology, Dec. 30,
1993.

FIPS Pub. 46-3. Data Encryption Standard (DES). Revised version of
46-2. Reaffirmed Oct. 25, 1999.

Forgy, “RETE: A Fast Algorithm for the Many Pattern/Many Object
Pattern Matching Problem”, Artificial Intelligence, 1982, pp. 17-37,
vol. 19.

Franklin et al., “Assisting Network Intrusion Detection with
Reconfigurable Hardware”, Symposium on Field-Programmable
Custom Computing Machines (FCCM 2002), Apr. 2002, Napa, Cali-
fornia.

Fuetal., “The FPX KCPSM Module: An Embedded, Reconfigurable
Active Processing Module for the Field Programmable Port Extender
(FPX)”, Washington University, Department of Computer Science,
Technical Report WUCS-01-14, Jul. 2001.

Garey et al., “Computers and Intractability: A Guide to the Theory of
NP-Completeness”, W.H. Freeman & Co., 1979.

Gavrila et al., “Multi-feature Hierarchical Template Matching Using
Distance Transforms”, IEEE, Aug. 16-20, 1998, vol. 1, pp. 439-444.
Google Search Results Page for “field programmable gate array
financial calculation stock market” over dates of Jan. 1, 1990-May
21, 2002, 1 page.

Guerdoux-Jamet et al., “Systolic Filter for Fast DNA Similarity
Search”, IEEE, 1995, pp. 145-156.

Guptaet al., “PMM: A Parallel Architecture for Production Systems,”
Proceedings of the IEEE, Apr. 1992, pp. 693-696, vol. 2.

Hutchings et al., “Assisting Network Intrusion Detection with
Reconfigurable Hardware”, FCCM 2002: 10th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines,
2002.

International Preliminary Report on Patentability (Chapter II) for
PCT/US2004/016021 dated Aug. 21, 2007.

International Preliminary Report on Patentability (Chapter II) for
PCT/US2004/016398 dated Mar. 13, 2006.

International Search Report for PCT/US2001/011255 dated Jul. 10,
2003.

International Search Report for PCT/US2002/033286 dated Jan. 22,
2003.

International Search Report for PCT/US2003/015638 dated May 6,
2004.

International Search Report for PCT/US2004/016021 dated Aug. 18,
2005.

International Search Report for PCT/US2004/016398 dated Apr. 12,
2005.

International Search Report for PCT/US2005/030046; Sep. 25, 2006.
Jacobson et al., “RFC 1072: TCP Extensions for Long-Delay Paths”,
Oct. 1988.

Jacobson et al., “tcpdump—dump traffic on a network”, Jun. 30,
1997, online at www.cse.cuhk.edu.hk/~cslui/CEG4430/tcpdump.ps.
gz.

“A Reconfigurable Computing Model for Biological Research Appli-
cation of Smith-Waterman Analysis to Bacterial Genomes” A White
Paper Prepared by Star Bridge Systems, Inc. [retrieved Dec. 12,
2006]. Retrieved from the Internet: <URL: http://www.
starbridgesystems.com/resources/whitepapers/Smith%20
Waterman%?20Whitepaper.pdf.

“Lucent Technologies Delivers “PayloadPlus” Network Processors
for Programmable, MultiProtocol, OC-48¢c Processing”, Lucent

Technologies Press Release, downloaded from http://www.lucent.
com/press/1000/0010320.meb.html on Mar. 21, 2002.

“Overview, Field Programmable Port Extender”, Jan. 2002 Gigabit
Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4,
2002, pp. 1-4.

“Payload Plus™ Agere System Interface”, Agere Systems Product
Brief, Jun. 2001, downloaded from Internet, Jan. 2002, pp. 1-6.
“RFC793: Transmission Control Protocol, Darpa Internet Program,
Protocol Specification”, Sep. 1981.

“Technology Overview”, Data Search Systems Incorporated, down-
loaded from the http://www.datasearchsystems.com/tech.htm on
Apr. 19, 2004.

“The Field-Programmable Port Extender (FPX)”, downloaded from
http://www.arl.wustl.edw/arl/ in Mar. 2002.

Altschul et al., “Basic Local Alignment Search Tool”, J. Mol. Biol.,
Oct. 5, 1990, 215, pp. 403-410.

Amanuma et al., “A FPGA Architecture for High Speed Computa-
tion”, Proceedings of 60th Convention Architecture, Software Sci-
ence, Engineering, Mar. 14, 2000, pp. 1-163-1-164, Information
Processing Society, Japan.

Anerousis et al., “Using the AT&T Labs PacketScope for Internet
Measurement, Design, and Performance Analysis”, Network and
Distributed Systems Research Laboratory, AT&T Labs-Research,
Florham, Park, NJ, Oct. 1997.

Anonymous, “Method for Allocating Computer Disk Space to a File
of Known Size”, IBM Technical Disclosure Bulletin, vol. 27, No.
10B, Mar. 1, 1985, New York.

ANSI X9-52-1998, “Triple Data Encryption Algorithm Modes of
Operation”, American National Standards Institute, Approved: Jul.
29, 1998.

Arnold et al., “The Splash 2 Processor and Applications”, Proceed-
ings 1993 IEEE International Conference on Computer Design:
VLSI in Computers and Processors (ICCD ’93), Oct. 3, 1993, pp.
482-485, IEEE Computer Society, Cambridge, MA USA.

Artan et al., “Multi-packet Signature Detection using Prefix Bloom
Filters”, 2005, IEEE, pp. 1811-1816.

Asami et al., “Improvement of DES Key Search on FPGA-Based
Parallel Machine “RASH””, Proceedings of Information Processing
Society, Aug. 15,2000, pp. 50-57, vol. 41, No. SIGS (HPS1), Japan.
Baboescu et al., “Scalable Packet Classification,” SIGCOMM’01,
Aug. 27-31, 2001, pp. 199-210, San Diego, California, USA; http://
www.ecse.rpi.edu/homepages/shivkuma/teaching/sp2001/readings/
baboescu-pkt-classification. pdf.

Baer, “Computer Systems Architecture”, 1980, pp. 262-265; Com-
puter Science Press, Potomac, Maryland.

Baeza-Yates et al., “New and Faster Filters for Multiple Approximate
String Matching”, Random Structures and Algorithms (RSA), Jan.
2002, pp. 23-49, vol. 20, No. 1.

Baker et al., “Time and Area Efficient Pattern Matching on FPGAs”,
ACM, Feb. 22-24, 2004, pp. 223-232.

Barone-Adesi et al., “Efficient Analytic Approximation of American
Option Values”, Journal of Finance, vol. 42, No. 2 (Jun. 1987), pp.
301-320.

Behrens et al., “BLASTN Redundancy Filter in Reprogrammable
Hardware,” Final Project Submission, Fall 2003, Department of
Computer Science and Engineering, Washington University.

Berk, “JLex: A lexical analyzer generator for Java™”, downloaded
from http://www.cs.princeton.edu/~appel/modern/java/Jlex/ in Jan.
2002, pp. 1-18.

Bianchi et al., “Improved Queueing Analysis of Shared Buffer
Switching Networks”, ACM, Aug. 1993, pp. 482-490.

Bloom, “Space/Time Trade-offs in Hash Coding With Allowable
Errors”, Communications of the ACM, Jul. 1970, pp. 422-426, vol.
13, No. 7, Computer Usage Company, Newton Upper Falls, Massa-
chusetts, USA.

Braun et al., “Layered Protocol Wrappers for Internet Packet Pro-
cessing in Reconfigurable Hardware”, Proceedings of Hot Intercon-
nects 9 (Hotl-9) Stanford, CA, Aug. 22-24, 2001, pp. 93-98.

Braun et al., “Protocol Wrappers for Layered Network Packet Pro-
cessing in Reconfigurable Hardware”, IEEE Micro, Jan.-Feb. 2002,
pp. 66-74.

US 9,176,775 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

Cavnar et al., “N-Gram-Based Text Categorization”, Proceedings of
SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval, Las Vegas, pp. 161-175, 1994.

Celko, “Joe Celko’s Data & Databases: Concepts in Practice”, 1999,
pp. 72-74, Morgan Kaufmann Publishers.

Chamberlain et al., “The Mercury System: Embedding Computation
Into Disk Drives”, 7th High Performance Embedded Computing
Workshop, Sep. 2003, Boston, MA.

Chamberlain et al., “The Mercury System: Exploiting Truly Fast
Hardware for Data Search”, Proc. of Workshop on Storage Network
Architecture and Parallel I/Os, Sep. 2003, New Orleans, LA.
Chenna et al., “Multiple-Sequence Alignment with the Clustal Series
of Programs”, Nucleic Acids Research, 2003, vol. 31, No. 13, pp.
3497-3500.

Cho et al., “Deep Packet Filter with Dedicated Logic and Read Only
Memories”, 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Apr. 2004.

Cho, “A Fast Regular Expression Indexing Engine”, Proc. of 18th
Int’l Conv. on Data Engineering, 2001, pp. 1-12.

Chodowiec et al.,, “Fast Implementations of Secret-Key Block
Ciphers Using Mixed Inter- and Outer-Round Pipelining”, Proceed-
ings of International Symposium on FPGAs, pp. 94-102 (Feb. 2001).
Choi et al., “Design of a Flexible Open Platform for High Perfor-
mance Active Networks”, Allerton Conference, 1999, Champaign,
IL.

Cholleti, “Storage Allocation in Bounded Time”, MS Thesis, Dept. of
Computer Science and Engineering, Washington Univeristy, St.
Louis, MO (Dec. 2002). Available as Washington University Tech-
nical Report WUCSE-2003-2.

Clark et al., “Scalable Pattern Matching for High Speed Networks”,
Proceedings ofthe 12th Annual IEEE Symposium on Field-Program-
mable Custom Computing Machines, 2004; FCCM 2004, Apr. 20-23,
2004; pp. 249-257; IEEE Computer Society; Cambridge, MA USA.
Cloutier et al., “VIP: An FPGA-Based Processor for Image Process-
ing and Neural Networks”, Proceedings of Fifth International Con-
ference on Microelectronics for Neural Networks, Feb. 12, 1996, pp.
330-336, Los Alamitos, California.

Cole, “Real-Time Computation by n-Dimensional Iterative Arrays of
Finite-State Machines”, Switching and Automata Theory, IEEE Con-
ference Record of Seventh Annual Symposium, 1996, Digital Object
Identifier: 10.1109/SWAT.1966.17, pp. 53-77.

Compton et al., “Configurable Computing: A Survey of Systems and
Software”, Technical Report, Northwestern University, Dept. of
ECE, 1999.

Compton et al., “Reconfigurable Computing: A Survey of Systems
and Software”, Technical Report, Northwestern University, Dept. of
ECE, 1999, presented by Yi-Gang Tai.

Cong et al., “An Optional Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs”, IEEE, 1992,
pp. 48-53.

Cuppu and Jacob, “Organizational Design Trade-Offs at the DRAM,
Memory Bus and Memory Controller Level: Initial Results,” Tech-
nical Report UMB-SCA-1999-2, Univ. of Maryland Systems &
Computer Architecture Group, Nov. 1999, pp. 1-10.

Denoyer et al., “HMM-based Passage Models for Document Classi-
fication and Ranking”, Proceedings of ECIR-01, 23rd European Col-
loquim Information Retrieval Research, Darmstatd, DE, pp. 126-
135, 2001.

Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom
Filters,” IEEE Micro, Jan.-Feb. 2004, vol. 24 Issue: 1, pp. 52-61.
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom
Filters,” Symposium on High Performance Interconnects (Hotl),
Stanford, California, 2003, pp. 44-51.

Dharmapurikar et al., “Design and Implementation of a String
Matching System for Network Intrusion Detection using FPGA-
based Bloom Filters”, Proc. of 12th Annual IEEE Symposium on
Field Programmable Custom Computing Machines, 2004, pp. 1-10.
Dharmapurikar et al., “Longest Prefix Matching Using Bloom Fil-
ters,” SIGCOMM, 2003, pp. 201-212.

Dharmapurikar et al., “Robust TCP Stream Reassembly in the Pres-
ence of Adversaries”, Proc. of the 14th Conference on USENIX
Security Symposium—vol. 14, 16 pages, Baltimore, MD, 2005,
http://www.icir.org/vern/papers/TcpReassembly/ TCPReassembly.
pdf.

Lockwood et al., “Hello, World: A Simple Application for the Field
Programmable Port Extender (FPX)”, Washington University,
Department of Computer Science, Technical Report WUCS-00-12,
Jul. 11, 2000.

Lockwood et al., “Parallel FPGA Programming over Backplane
Chassis”, Washington University, Department of Computer Science,
Technical Report WUCS-00-11, Jun. 12, 2000.

Lockwood et al., “Reprogrammable Network Packet Processing on
the Field Programmable Port Extender (FPX)”, ACM International
Symposium on Field Programmable Gate Arrays (FPGA 2001),
Monterey, CA, Feb. 2001, pp. 87-93.

Lockwood, “An Open Platform for Development of Network Pro-
cessing Modules in Reprogrammable Hardware”, IEC DesignCon
2001, Santa Clara, CA, Jan. 2001, Paper WB-19.

Lockwood, “Building Networks with Reprogrammable Hardware”,
Field Programmable Port Extender: Jan. 2002 Gigabit Workshop
Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002.
Lockwood, “Evolvable Internet Hardware Platforms”, NASA/DoD
Workshop on Evolvable Hardware (EHW’01), Long Beach, CA, Jul.
12-14, 2001, pp. 271-279.

Lockwood, “Hardware Laboratory Configuration”, Field Program-
mable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Wash-
ington University, St. Louis, MO, Jan. 3-4, 2002.

Lockwood, “Introduction”, Field Programmable Port Extender: Jan.
2002 Gigabit Workshop Tutorial, Washington University, St. Louis,
MO, Jan. 3-4, 2002.

Lockwood, “Platform and Methodology for Teaching Design of
Hardware Modules in Internet Routers and Firewalls”, IEEE Com-
puter Society International Conference on Microelectronic Systems
Education (MSE’2001), Las Vegas, NV, Jun. 17-18, 2001, pp. 56-57.
Lockwood, “Protocol Processing on the FPX”, Field Programmable
Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington
University, St. Louis, MO, Jan. 3-4, 2002.

Lockwood, “Simulation and Synthesis”, Field Programmable Port
Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington Univer-
sity, St. Louis, MO, Jan. 3-4, 2002.

Lockwood, “Simulation of the Hello World Application for the Field-
Programmable Port Extender (FPX)”, Washington University,
Applied Research Lab, Spring 2001 Gigabits Kits Workshop.
Madhusudan, “Design of a System for Real-Time Worm Detection”,
Hot Interconnects, pp. 77-83, Stanford, CA, Aug. 2004, found at
http://www.hoti.org/hoti 1 2/program/papers/2004 1paper4.2 .pdf.
Madhusudan, “Design of a System for Real-Time Worm Detection”,
Power Point Presentation in Support of Master’s Thesis, Washington
Univ., Dept. Of Computer Science and Engineering, St. Louis, MO,
Aug. 2004.

Mao et al., “Cluster-based Online Monitoring System of Web Traf-
fic”, Dept. Of Computer Science and Technology, Tsinghua Univ.,
Bejing, 100084 P.R. China Jun. 26, 2014.

Minutes of the Oral Proceedings for EP Patent Application No.
03729000.4 dated Jul. 12, 2010.

Mitra, et al., “An FPGA Implementation of Triangle Mesh Decom-
pression”, Proceedings of the 10th Annual Symposium on Field-
Programmable Custom Computing Machines, 2002, pp. 1-10.
Mitzenmacher, “Compressed Bloom Filters”, IEEE/ACM Transac-
tions on Networking, Oct. 2002 (manuscript received Aug. 1, 2001
and revised Dec. 5, 2001), pp. 604-612, vol. 10, No. 5, U.S.A.
Mosanya et al., “A FPGA-Based Hardware Implementation of Gen-
eralized Profile Search Using Online Arithmetic”, ACM/Sigda Inter-
national Symposium on Field Programmable Gate Arrays (FPGA
’99), Feb. 21-23, 1999, pp. 101-111, Monterey, CA, USA.

Moscola et al., “FPGrep and FPSed: Regular Expression Search and
Substitution for Packet Streaming in Field Programmable Hard-
ware”, Dept. Of Computer Science, Applied Research Lab, Wash-
ington University, Jan. 8, 2002, unpublished, pp. 1-19, St. Louis, MO.

US 9,176,775 B2
Page 9

(56) References Cited
OTHER PUBLICATIONS

Moscola et al., “FPSed: A Streaming Content Search-and-Replace
Module for an Internet Firewall”, Proc. Of Hot Interconnects, 11th
Symposium on High Performance Interconnects, pp. 122-129, Aug.
20, 2003.

Moscola, “FPGrep and FPSed: Packet Payload Processors for Man-
aging the Flow of Digital Content on Local Area Networks and the
Internet”, Master’s Thesis, Sever Institute of Technology, Washing-
ton University, St. Louis, MO, Aug. 2003.

Navarro, “A Guided Tour to Approximate String Matching”, ACM
Computing Surveys, vol. 33, No. 1, Mar. 2001, pp. 31-88.

Necker et al., “TCP-Stream Reassembly and State Tracking in Hard-
ware”, School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA.

Niewczas et al., “A Pattern Matching Algorithm for Verification and
Analysis of Very Large IC Layouts”, AAM, Apr. 1998, pp. 129-134.
Notice of Allowance for U.S. Appl. No. 11/339,892 dated Jan. 20,
2011.

Notice of Allowance for U.S. Appl. No. 11/359,285 dated Dec. 8,
2010.

Notice of Allowance for U.S. Appl. No. 11/561,615 dated Sep. 12,
2011.

Notice of Allowance for U.S. Appl. No. 11/765,306 dated Jan. 25,
2011.

Notice of Allowance for U.S. Appl. No. 11/932,391 dated Jan. 19,
2011.

Notice of Allowance for U.S. Appl. 11/932,652 dated Jan. 19, 2011.
Notice of Allowance for U.S. Appl. No. 12/703,388 dated Jan. 3,
2011.

Nunez et al, “The X-MatchLITE FGPA-Based Data Compressor”,
Euromicro Conference 1999, Proceedings, Italy, Sep. 8-10, 1999, pp.
126-132, Los Alamitos, CA.

Nunez, et al., “Lossless Data Compression Programmable Hardware
for High-Speed Data Networks”, IEEE International Conference on
Field-Programmable Technology, 2002, pp. 290-293, Dept. Of Elec-
tronic and Electrical Engineering, Loughborough University,
Longhborough, UK.

Nwodoh et al., “A Processing System for Real-Time Holographic
Video Computation”, Reconfigurable Technology: FPGAs for Com-
puting and Application, Proceedings for the SPIE, Sep. 1999, Boston,
pp. 129-140, vol. 3844.

Office Action for CA Application 2522862 dated May 17, 2011.
Office Action for CA Application 2522862 dated May 3, 2010.
Office Action for CA Application 2523548 dated Aug. 31, 2012.
Office Action for CA Application 2523548 dated Jan. 19, 2012.
Office Action for CA Application 2523548 dated Mar. 31, 2011.
Office Action for EP Application 04752943.3 dated Apr. 26, 2010.
Office Action for EP Application 04753259.3 dated Apr. 15, 2010.
Office Action for JP Application 2006-514919 dated Aug. 24, 2010.
Office Action for JP Application 2006-514919 dated Jan. 20, 2010.
Office Action for JP Application 2006-533393 dated Aug. 24, 2010.
Office Action for JP Application 2006-533393 dated Jan. 26, 2010.
Office Action for U.S. Appl. No. 10/550,323 dated Jan. 3, 2011.
Office Action for U.S. Appl. No. 10/550,323 dated Jun. 24, 2010.
Office Action for U.S. Appl. No. 10/550,326 dated Dec. 23, 2010.
Office Action for U.S. Appl. No. 10/550,326 dated Jun. 3, 2010.
Dharmapurikar, “Fast and Scalable Pattern Matching for Content
Filtering”, ACM, ANCS 05, 2005, pp. 183-192.

Ebeling et al., “RaPiD—Reconfigurable Pipelined Datapath”, Uni-
versity of Washington, Dept. Of Computer Science and Engineering,
Sep. 23, 1996, Seattle, WA.

Edgar, “Muscle: Multiple Sequence Alignment with High Accuracy
and High Throughput”, Nucleic Acids Research, 2004, vol. 32, No. 5,
pp. 1792-1797.

English Translation of Office Action and Claims for JP Application
2006-533393 dated Mar. 15, 2011.

Extended European Search Report for EP Application 12165559.1
dated Oct. 29, 2012.

Extended European Search Report for EP Application 12165819.9
dated Sep. 17, 2012.

Feldmann, “BLT: Bi-Layer Tracing of HTTP and TCP/IP”, AT&T
Labs-Research, Flortham Park, NJ, USA Jun. 26, 2014.

Gunther et al.,, “Assessing Document Relevance with Run-Time
Reconfigurable Machines”, IEEE Symposium on FPGAs for Custom
Computing Machines, 1996, pp. 10-17, Proceedings, Napa Valley,
CA.

Gupta et al., “High-Speed Implementations of Rule-Based Systems,”
ACM Transactions on Computer Systems, May 1989, pp. 119-146,
vol. 7, Issue 2.

Gupta et al., “Packet Classification on Multiple Fields”, Computer
Systems Laboratory, Stanford University, Stanford, CA Jun. 26,
2014.

Gupta et al, “PMM: A Parallel Architecture for Production Systems,”
Proceedings of the IEEE, Apr 1992, pp. 693-696, vol. 2.

Gurtov, “Effect of Delays on TCP Performance”, Cellular Systems
Development, Sonera Corporation, online at http://cs.helsinki.fi/u/
gurtov/papers/pwc01.pdf Jun. 26, 2014.

Gyang, “NCBI BLASTN Stage | in Reconfigurable Hardware,”
Technical Report Wucse-2005-30, Aug. 2004, Department of Com-
puter Science and Engineering, Washington University, St. Louis,
MO.

Hauck et al., “Software Technologies for Reconfigurable Systems”,
Northwestern University, Dept. Of ECE, Technical Report, 1996.
Hayes, “Computer Architecture and Organization”, Second Edition,
1988, pp. 448-459, McGraw-Hill, Inc.

Hezel et al., “FPGA-Based Template Matching Using Distance
Transforms”, Proceedings of the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, Apr. 22, 2002,
pp. 89-97, IEEE Computer Society, USA.

Hoinville, et al. “Spatial Noise Phenomena of Longitudinal Magnetic
Recording Media”, IEEE Transactions on Magnetics, vol. 28, No. 6,
Nov. 1992.

Hollaar, “Hardware Systems for Text Information Retrieval”, Pro-
ceedings of the Sixth Annual International ACM Sigir Conference on
Research and Development in Information Retrieval, Jun. 6-8, 1983,
pp- 3-9, Baltimore, Maryland, USA.

Jeanmougin et al., “Multiple Sequence Alignment with Clustal X",
TIBS, 1998, vol. 23, pp. 403-405.

Johnson et al., “Pattern Matching in Reconfigurable Logic for Packet
Classification”, College of Computing, Georgia Institute of Technol-
ogy, Atlanta, GA Jun. 26, 2014.

Jones et al., “A Probabilistic Model of Information Retrieval: Devel-
opment and Status”, Information Processing and Management, Aug.
1998, 76 pages.

Jung et al., “ Efficient VLSI for Lempel-Ziv Compression in Wireless
Data Communication Networks”, IEEE Transactions on VLSI Sys-
tems, Sep. 1998, pp. 475-483, vol. 6, No. 3, Institute of Electrical and
Electronics Engineers, Washington, DC, USA.

Keutzer et al., “A Survey of Programmable Platforms—Network
Proc”, University of California-Berkeley, pp. 1-29 Jun. 26, 2014.
Koloniari et al., “Content-Based Routing of Path Queries in Peer-to-
Peer Systems”, pp. 1-19, E. Bertino et al. (Eds.): EDBT 2004, LNCS
2992, pp. 29-47, 2004, copyright by Springer-Verlag, Germany.
Kulig et al., “System and Method for Controlling Transmission of
Data Packets Over an Information Network”, pending U.S. Patent
Application Jun. 26, 2014.

Lietal., “Large-Scale IP Traceback in High-Speed Internet: Practical
Techniques and Theoretical Foundation”, Proceedings of the 2004
IEEE Symposium on Security and Privacy, 2004, pp. 1-15.

Lin et al., “Real-Time Image Template Matching Based on Systolic
Array Processor”, International Journal of Electronics; Dec. 1, 1992;
pp. 1165-1176; vol. 73, No. 6; London, Great Britain.

Lockwood et al., “Field Programmable Port Extender (FPX) for
Distributed Routing and Queuing”, ACM International Symposium
on Field Programmable Gate Arrays (FPGA 2000), Monterey, CA,
Feb. 2000, pp. 137-144.

Office Action for U.S. Appl. No. 11/690,034 dated Dec. 14, 2010.
Office Action for U.S. Appl. No. 11/932,596 dated Dec. 3, 2010.
Office Action for U.S. Appl. No. 13/345,011 dated Aug. 28, 2012.
Partial International Search Report for PCT/US03/15638 dated Feb.
3,2004.

US 9,176,775 B2
Page 10

(56) References Cited
OTHER PUBLICATIONS

Patterson, “High Performance DES Encryption in Virtex™ FPGAs
using JBits™”, IEEE Symposium on Field-Programmable Custom
Computing Machines, 2000, pp. 113-121.

Pirschetal., “VLSI Architectures for Video Compression-A Survey”,
Proceedings of the IEEE, Feb. 1995, pp. 220-243, vol. 83, No. 2,
Institute of Electrical and Electronics Engineers, Washington, DC,
USA.

Prakash et al., “OC-3072 Packet Classification Using BDDs and
Pipelined SRAMs”, Department of Flectrical and Computer Engi-
neering, The University of Texas at Austin Jun. 26, 2014.

Pramanik et al., “A Hardware Pattern Matching Algorithm on a
Dataflow”; Computer Journal; Jul. 1, 1985; pp. 264-269; vol. 28, No.
3; Oxford University Press, Surrey, Great Britain.

Ramakrishna et al., “A Performance Study of Hashing Functions for
Hardware Applications”, Int. Conf. On Computing and Information,
May 1994, pp. 1621-1636, Vol. 1, No. 1.

Ramakrishna et al., “Efficient Hardware Hashing Functions for High
Performance Computers”, IEEE Transactions on Computers, Dec.
1997, vol. 46, No. 12.

Ramesh et al., “Automatic Selection of Tuning Parameters for Fea-
ture Extraction Sequences”, IEEE, Jun. 21-23, 1994, pp. 672-677.
Ranganathan et al., “High-Speed VLSI Designs for Lempe-Ziv
Based Data Compression”, IEEE Transactions on Circuits and Sys-
tems-II: Analog and Digital Signal Processing, Feb. 1993, pp.
96-106, vol. 40, No. 2, Institute of Flectrical and Electronics Engi-
neers, Washington, DC, USA.

Ratha et al., “Convolution on Splash 27, Proceedings of IEEE Sym-
posium on FPGAS for Custom Computing Machines, Apr. 19, 1995,
pp. 204-213, Los Alamitos, California.

Ratha et al., “FPGA-based coprocessor for text string extraction”,
IEEE, Sep. 11-13, 2000, pp. 217-221.

Roberts, “Internet Still Growing Dramatically Says Internet
Founder”, Press Release, Caspian Networks, Inc.—Virtual
Pressroom Jun. 26, 2014.

Roesch, “Snort—Lightweight Intrusion Detection for Networks”,
Proceedings of Lisa *99: 13th Systems Administration Conference;
Nov. 7-12, 1999; pp. 229-238; USENIX Association, Seattle, WA
USA.

Roy, “A bounded search algorithm for segmented channel routing for
FPGA’s and associated channel architecture issues”, IEEE, Nov. 11,
1993, pp. 1695-1705, vol. 12.

Russ, “The Image Processing Handbook”, 3rd Edition, 1999, CRC
Press, pp. 365-367.

Sachin Tandon, “A Programmable Architecture for Real-Time
Derivative Trading”, Master’s Thesis, University of Edinburgh,
2003.

Schmit, “Incremental Reconfiguration for Pipelined Applications”,
FPGAs for Custom Computing Machines, Proceedings, the 5th
Annual IEEE Symposium, Dept. Of ECE, Carnegie Mellon Univer-
sity, Apr. 16-18, 1997, pp. 47-55, Pittsburgh, PA.

Schuehler et al., “Architecture for a Hardware Based, TCP/IP Con-
tent Scanning System”, IEEE Micro, 24(1):62-69, Jan-Feb. 2004,
USA.

Schuehler et al., “TCP-Splitter: A TCP/IP Flow Monitor in
Reconfigurable Hardware”, Hot Interconnects 10 (Hotl-10),
Stanford, CA, Aug. 21-23, 2002, pp. 127-131.

West et al., “An FPGA-Based Search Engine for Unstructured Data-
base”, Proc. Of 2nd Workshop on Application Specific Processors,
Dec. 2003, San Diego, CA Jun. 26, 2014.

Wooster et al., “HTTPDUMP Network HT TP Packet Snooper”, Apr.
25, 1996.

Written Opinion for PCT/US2004/016021 dated Aug. 31, 2005.
Written Opinion for PCT/US2004/016398 dated Jun. 9, 2005.
Yamaguchi et al., “An Approach for Homology Search with
Reconfigurable Hardware”, Google, 2001, pp. 374-375.
Yamaguchi et al., “High Speed Homology Search with FPGAs”,
Proceedings Pacific Symposium on Biocomputing, Jan. 3-7, 2002,
pp. 271-282, vol. 7, Online, Lihue, Hawaii, USA.

* cited by examiner

U.S. Patent Nov. 3, 2015 Sheet 1 of 47 US 9,176,775 B2

28
34 e
DISK
r-——P CONTROLLER
32 <
£ 30
N
CACHES v ./
I D MASS STORAGE
MEDIUM

|
|
|
I DATA SHIFT }
! REGISTER ! 24 Q
|
| L : DISK
| RECONFIGURABLE |20 DRIVE
| LOGIC DEVICE "
| §
‘ 122
<_7' MICROPROCESSOR [
y | = I/_L
e e - - . L, 21
. S R [e
i C i
! DATA SHIFT | g
38 NETWORK : REGISTER :
|
l RBcothRABLE i 20
|
| LOGIC DEVICE wT
|
! CON'!I'ROL !
OTHER L__I._>' 22
40— MICROPROCESSOR
COMPUTER | ’_?_
SYSTEM o 4
BUS

Figure 1

U.S. Patent Nov. 3, 2015 Sheet 2 of 47 US 9,176,775 B2

26
~ 18

VAR A

ANALOG DIGITAL ERROR CORRECTION

© CIRUITRY DECODER CIRUITRY

Figure 2

U.S. Patent Nov. 3, 2015 Sheet 3 of 47 US 9,176,775 B2
44 46 20
Z Z pd
Synthesizeable Logic R
Hardware Descriptio Synthesis ecanfigurable
r’ Language (e.;?\?m;-iof) — Yoonet | 7] Logic Devics
Com| d
nquiry
| : High-Level La c
40/ 42/ Langmgg (e.;x C/C++) —> C:r?\:ailgre —> 03;”
7 7 7
43 50 22

Figure 3

US 9,176,775 B2

Sheet 4 of 47

Nov. 3, 2015

U.S. Patent

27
D D
. 35
D D /
i i /37

19

Figure 4

US 9,176,775 B2

Sheet 5 of 47

Nov. 3, 2015

U.S. Patent

D n S S SR . . D S L WS D S MR YR R R Y D e A D A OB Gn e e G A

]

:

8 oA m
N, N
...... w... \ :

< A , m

! H

A EH |
T |

m > H

i — |

(&) o nulc m
[+ « ‘ul‘ m
L |

191

Figure 5

/ 47

U.S. Patent Nov. 3, 2015 Sheet 6 of 47
/ 45 <« 41
43
/
CPU
< »| MASS STORAGE
MEDIUM
Figure 6
52
51
MASS
STORAGE NETWORK
MEDIUM

Figure 7

2 |..19

US 9,176,775 B2

54

54

U.S. Patent Nov. 3, 2015 Sheet 7 of 47

US 9,176,775 B2

58
56 5
N
MASS
STORAGE [P
NETWORK
MEDIUM
60
CPU
DISC
\ 57

Figure 8

DISC

U.S. Patent Nov. 3, 2015 Sheet 8 of 47

@
"N Call 10 0.5. Mass Storage Utiities |

66 ~~"CPU SENDS SEARCH INQUIRY]
l

64

US 9,176,775 B2

[EA

Oier.
t’Gn:4 .
Storage medium conlrol
unit initales positioning of
E unit for reading
7]
[s
Read Prestored 8%
Data Koy 9
Siore Digital | 78
79 |WiteDalaKeyon| _ ., Data Key
/ Disk
o el i1
g
o oo Flead Data Key from | ..
I —
[Store Dightal Sample of Analog Data Key J— 70
y
@-—{ Continuous Readirg of Target Data from Disk l— 78
ANALOG I ' L DIGITAL
80 —‘ Analog Comparison and Correlation l lDigi!al Commaretor, matching and correlalion}—- 82
| |
YES
86 — Procesa/Sendio Disk Cache/Other | Return 1o
~——— 88

o NO Finished DONE

Figure 9

U.S. Patent Nov. 3, 2015 Sheet 9 of 47 US 9,176,775 B2

Volts-

Q .6 R] L] * Ll) 1 1 1)

o2

04}

0.6

0.8 [] | . (1 | 1 i] A1

Figure 10

U.S. Patent Nov. 3, 2015 Sheet 10 of 47 US 9,176,775 B2

Voits
0.8 T T —

06}

04}

0.2

0.4}

-0.6f

-0.8
0

1] i 1 i [1 .] A
50 100 150 200 250 300 350 400 450 500

Figure 11

U.S. Patent Nov. 3, 2015 Sheet 11 of 47 US 9,176,775 B2

Volts

0.6 T ¥ T T Y T — T T

04} 4

0.2 -

02} J

04}

06} -

_0 .a - - 1 L] 1] 1 1 1
() 5 10 1§ 20 25 20 35 40 45 50

Figure 12

U.S. Patent Nov. 3, 2015 Sheet 12 of 47 US 9,176,775 B2

o8}

0.6

0.64 J
08 ! ' X 1 i L L 2 1
0 50 100 150 200 250 300 350 400 450 §00

Figure 13

U.S. Patent Nov. 3, 2015 Sheet 13 of 47 US 9,176,775 B2

Volits

0.8

0.6

0.4

021

0.2

041

0.6}

]]
S0 100 150 200 250 00 350 400 450

Figure 14

U.S. Patent

pt

p2

t

12

Nov. 3, 2015

13

4 15} 16

Sheet 14 of 47

t7

18

19

di,1
d2,1
d3,1

d4,1

di,2
d2,2
ds,2

d4,2

di,3

d2,3

d3,3

d4,3

di,4 d1,5 di,6

d2,4 d25 d26
d3,4 d3,5«d36

d4,4 d45 d46

Figure 15

d1,7
d2,7
ds,7

d4,7

di,8
d2,8
ds,s

d4,8

d1,9
d2,9
ds,9

4,9

>

US 9,176,775 B2

38

U.S. Patent Nov. 3, 2015 Sheet 15 of 47 US 9,176,775 B2

53
{ » pt
ol oz 18
T e s
d27 LLyf d28 L1y} d25
7| N
ps /
ase | 1ylaas|_ pldss
4 pa
i
4.5 e d4,4

Figure 16

U.S. Patent Nov. 3, 2015 Sheet 16 of 47 US 9,176,775 B2

L 7] 15
2 1
L R P
d1.8 d1,7 di.6
=P < p2
427 d2,6 d2s
) p3
436 43,5 d3.4
¥
> +-—— a
445 d4,4
Figure 17
M el P s
p1
pld18 d1.7
p2
d2,7 d26
59/ ' g L g
p3
ald36 {435
pé
d4,5

Figure 18

US 9,176,775 B2

Sheet 17 of 47

Nov. 3, 2015

U.S. Patent

Figure 19

U.S. Patent Nov. 3, 2015 Sheet 18 of 47 US 9,176,775 B2

c b s x
N :
['] 1 2
x
N ”
2 3 4
A A p P
2113 0
2 a
Ly}
2]
Figure 20
s 4 K > 3

Figure 21
s [[} a
L5 :
a ° 1
v x
L) ¢
1 2 3
¥ 5
s{|]2 3
4 s
> <
1 2

Figure 22

U.S. Patent Nov. 3, 2015 Sheet 19 of 47

124 122
ct,1{Y 7"]cl2 c1,3 ctd v "Hc1 5T "jci6
2 3 I 3
A y A \ 4
122 2,1 [€ P 2,2 [€ P 2,3 [P 2.0 [€ P c25 [€P) 26
I 4 I 3 [
3 4) ¥

&
$
[
[y
&
w
i
B
F
4
Y
)
[
A
A
&
@

128 4,1 [€ P ca2 (P ca3 04,4 c4,5 € cas

US 9,176,775 B2

120

F 3
h 4

124 i | 51

&

3

y
&
n

3
A
&
[
!

6.4 [Pcess { P 66

122 126

Figure 23

122

124

U.S. Patent Nov. 3, 2015 Sheet 20 of 47 US 9,176,775 B2

134\
:l—--——— -——-—"K-'-—"—:"r-v'-—‘ ———————————— 130
H {
A ﬂ'l et =P ct1,2 c1,3 cab=PcisP cis l/
_— e A T T
i el St Zog ol ok Sl gy - 136
I
: 2,1 2,2 c2,3 2,4 c2.5 c26 |[f—» 132
| i R i S Naiat Iy Sl B Rt [y e
/
136/ b 3 3 .
03,1 3.2 3.3 3.4 3.6 36
1
c4,1 4,2 c4,3 4,4 c4,5 4,6
A A A v A A
5,1 5.2 c5,3 5,4 5.5 ¢5,6
b A A h
6,1 6,2 6,3 6.4 6.5 6,6

Figure 24

U.S. Patent

Nov. 3, 2015 Sheet 21 of 47
144 142
V4

LOADTL >

154]

CMPTI}
150 < 152
< Compare / >
Logic
r
I 148
e
146 156
+

Figure 25

US 9,176,775 B2

/ e

US 9,176,775 B2

160

:

U.S. Patent Nov. 3, 2015 Sheet 22 of 47
1441 1421
. \
¥
LOADTLj
CMPTY
< Compare >
1
19Q TN
CMPPIJ 1481
LOADPLj >
V4
/ v v v

162

Figure 26

U.S. Patent

Nov. 3, 2015

/

—>

Sheet 23 of 47

US 9,176,775 B2

1 lg

min(AB) 1~

110

:

min
price

/104

—

1

g
~ 142

A

max(A,B)

L~

:

max L~

price

—

Figure 27

114

latest
price

U.S. Patent Nov. 3, 2015 Sheet 24 of 47 US 9,176,775 B2

D

(

180
4 Zm 182
—— 186
(A 134
/l/)
y \188
f 192

US 9,176,775 B2

Sheet 25 of 47

Nov. 3, 2015

U.S. Patent

ve
sng WajsAS —«—
woJ4/0]

62 2inbi4

(z02)
Buissanolid

N obejs

-— -

10888001 |0JjU0D

Y Y
(z02) (202)
- -{ BuIssa20i |- Buissaoold
Z obeis | obejg
(v02)

_
_
_
_
_
_
_
_
I
|
_
I
!

~—

9¢
wnipapy
™ obelioig
woJ4/01

US 9,176,775 B2

Sheet 26 of 47

Nov. 3, 2015

U.S. Patent

14>

SNA g
wsisig

oL

0¢ 2inbi
4 J
00¢

1 llllllllllllllllllllllllll d’ -

auibu3g uondAioaq |
| auibug suiBuy u. o
| yoseeg uoissaldwooeg | [
I~ " « !

_

| 202) | (202 |<ed (@00 |ed (200 |« (202 |«d (202) AI__|
Il gebers G obejg | t ebeis ¢ obelg ¢ ebeig | obejg _
| i
~ _ lllllllllllllllll pu _
_ _
|
|
| (¥02)
_

10$$820.d [0UOD

9¢
Wwnipsiy
abelo)g
SSE WOl

— wea.g ejeq

padAioug
pue
passalduwio)

US 9,176,775 B2

Sheet 27 of 47

Nov. 3, 2015

U.S. Patent

¢ 8Inbi4

vN,J

8lLc 9i¢ vic oie [4%4
~4+—» | sulbug suibug [P aulbug ~4—p»— suibug aulbug |-et+—»
yoleag uolssaidwon uolssaldwoossq uondAlos(g uoidAioug
(#02)
J0S$$8001d |0J3U0D
L€ @nbig
9c
12> wnipa
sng WSISAS O] ¢ tANA p obelio)g ssepy

eleq paydAousun

swbug uondAioug

0} eje paydAioug

U.S. Patent Nov. 3, 2015 Sheet 28 of 47

220 Input Reg.

US 9,176,775 B2

225

Y

222&\ MUX /

224\/ Round
CL

226 Output Reg.

\
Figure 33

U.S. Patent Nov. 3, 2015 Sheet 29 of 47 US 9,176,775 B2

220 | Input Reg. 225

'
2223\ er /

224a
D

Round CL
- intra-round pipeline register

228

228

A

ntra-round Pipeline Reg.

i

230__| Inter-round Pipeline Reg.

'

Round CL
~— intra-round pipeline register

224b__ |
228

228

~ intra-round pipeline register

'

~—1 Output Reg.

226

Y
Pipelined encryption/decryption engine.

Figure 34

U.S. Patent Nov. 3, 2015 Sheet 30 of 47 US 9,176,775 B2

220
Input Reg.

2242~ ¢

Round CL
~ intra-round pipeline register

228

228

ntra-round Pipeline Reg.

'

230a__| Inter-round Pipeline Reg.

'

224n N ‘

Round CL
~ intra-round pipeline register

N

228

228 intra-round pipeline register

'

~—1 Output Reg.

l

Fully pipelined encryption/decryption engine.
Figure 35

226

US 9,176,775 B2

Sheet 31 of 47

Nov. 3, 2015

U.S. Patent

(paydAious)
ejeq
s.g Aped

(v Aued Aq pejjonuo))
ashoyaliep aleq

9¢ ainbi4

wiea1s €1ep pa1dAiny,

1sanbay s,9 Aued
0} aAIsuodsay

" T—a

4/\\\\

(g Aued Aq
pajjojjuo)) Aem
-9)ec) SS90y

ejeq paydAioug

-~

>

ele(Joj }1senbay

1ssnbay jeAlyd)

s.0 Aued

US 9,176,775 B2

Sheet 32 of 47

Nov. 3, 2015

U.S. Patent

/€ 2inb1

pasiwolidwo)
S| 10SS800.d

Jl asemjely Aq
3]q1s$800Y 9q
"M 1XSL uleld

-

eled LG
- paydAioug Buisn |+
19AlI_d ydAioug

AlowsN ueN |
ul }xs] uiejd

| Aoy
Buisn
1dA108Qq

10ss900.1d

ejeq
L pajdAioug

pal0ls

210]S eleq

US 9,176,775 B2

Sheet 33 of 47

Nov. 3, 2015

U.S. Patent

alemjepy Aq 8¢ ainbi4
pasiwosdwon
st ey}
108s820.d
sjoway e o}
s|qissoooRU| <+
sI X8| utejd
908¢
0 Aved J
0} ejeg Z Aoy Aowsy WEY ejeq
<paydhoug pusy |<*— @noss —— Buisn - paidAiouy
JBaAle(d 1dA1oug ui jXs] ule|d 1dA10aQg paiolS
808t p vOdH

)

/

)

c08¢ ¥4 008¢

g Aped jo jo5uog Jepun

(v Aued jo
[oJjuo)) 18pun)

©10]S ele(

US 9,176,775 B2

Sheet 34 of 47

Nov. 3, 2015

U.S. Patent

(e)6g @nbi4

Ve
pJeoguaujopy ‘dwo) o}

mvmmJ »

' 10108UU0D X-10d

viee clee
)

\

\

T

]

806¢
19Y%00S aJemulli

SINPON SINPON

o idAoeg| |1dAoug| Y

o $0BE Z06¢
i (9% '04 1808) | | ®

m L J9||0u0D L .

S #sia) § . vOdd

2 Le fowspy

sng X-10d
ajenld pleog Jenlag
& o068/ v
0L6€ 006€

US 9,176,775 B2

Sheet 35 of 47

Nov. 3, 2015

U.S. Patent

(9)6€ a4nbi4 pe
sng Jandwo) o)
9l6¢ \ »
" Jopsuuo) X-10d
\
A\
806¢
p16€ 195008 SJemull

9c
wnipaiy
abelo)s
SSe|
wol4

——

™

(s)40308UU0D ¥SI]

A1

(912 '04 'IS08) | |1
L »- 13]|0U0D)

Y06¢€ 206¢
SINPON |, | @INPOIN
dAoeqg| |1dAioug

e 906¢ VOdd
Aows |\
sng X-10d
ajenlld pJeoq Jonieg
0lL6E ¥ 0068 p

US 9,176,775 B2

Sheet 36 of 47

Nov. 3, 2015

U.S. Patent

s)nsey
<—olesag
Janeq

140[0)%
yolesg

Ot @inbi4

<——]X8] ulejd

¢00¥ - passaidwioD

puedx3

1

_
|
_

ejeq

pPaI0)S

0
ﬁ@ N

2I10}S ele(

US 9,176,775 B2

Sheet 37 of 47

Nov. 3, 2015

U.S. Patent

L @Inbi4
PJEOGJSYIO}\ JOAISS UO ¢ SNg O]
916¢ 10J03UU0D X-|1Od
\
\
806¢€
10)00S aJemuwii-
(onuq ‘B'8) ximm ﬁmsm
9¢ ,G _ 200y ¥00¥
wnipsi = sinpoy [¥XOL | sinpoyy |1
abelo)g M 1dAioaq [YEld |1dAiou
SSEBN —— g (032 ‘04 '1S08) I
=S L1
wo.l4 m — 1> Jajonuon "]
ol 3sid
g 906¢ vodd
2 Aows\
sng X-10d
ojeAld pieog 1snag
Olee ¥ 006¢ L

US 9,176,775 B2

Sheet 38 of 47

Nov. 3, 2015

U.S. Patent

2t 2inbi4 be
. sng was)sAg wol
ZI68g ,
\ 91.6¢ 10}99UU0D X-Dd
\
\
806¢

\Som 18)/003 alemuii

9c 7 00cvy
,

e | 8 e
~— & uoissaidwo
SR IE (018 ‘04 ‘ISOS) P . J
wiold m ~——1 _ Jg|lonuon
8 a vOd4d
@ 906€
= Aiows|y
sng X-10d
ajeAld pJeog 19N
0L6¢ p 006¢ p

U.S. Patent Nov. 3, 2015 Sheet 39 of 47

HDL
Source (Code Level
Logic for Process-
ing Engines)

4300

4300 Synthesis
] Tool

l

Gate Level
Description for
Processing
Engines

4300

4300 Place &
1 Route Tool

l

Configuration
Template to be
Loaded into
FPGA

4300

Figure 43

US 9,176,775 B2

U.S. Patent Nov. 3, 2015 Sheet 40 of 47 US 9,176,775 B2

Track

Track 4462

/ ;;;;}'fl:’"’
Track (‘ %%
4400b M - ////////////// \

4466 (NA
~ 4
4406 © ©
o) @
Rb
4464 ~
—
(4450
4460
2T W= Total
D= W ' Number
of
Wedges
PRIOR ART

Figure 44(a)

US 9,176,775 B2

Sheet 41 of 47

Nov. 3, 2015

U.S. Patent

(9)¥¥ 81nbi4
(ZL¥Y)
SaIAe(d Z0v¥
[euonejoy / m
¢mvv,// Lg% T mmmmmeWm
oSty — — — — m—m —‘
] i
25vp—/ | 0 ia% w
. [m
S D vy
N\ “ (L¥¥)
ostr——J I'T1 weshs
7 ' Buluonisod
A% Lo vovy oo
Lo W&T PeeH
v Lo vovy
/ } |
osvy ——J—H m____
Zsvy Y 00b r.m\ﬂwuuuuuuw
Y
Va4
90y T
Y0¥¥ Speay 40} JUSWSAOP JO uoijoal(]
0Lvy

U.S. Patent Nov. 3, 2015 Sheet 42 of 47 US 9,176,775 B2

— T
axis
44504 y X 4462 4500g
4450+ 450043
44504
45005
> WI/T
A .
’éb
44504
4450¢
/
4450 44509

Figure 45

U.S. Patent Nov. 3, 2015 Sheet 43 of 47 US 9,176,775 B2

Sense Portion of
Disk Over Which
Head Resides

|

Position disk to
D; 4602

D= N_\Cl'_ + dO
W

/4600

r = Revolution #

w = Wedge #

T = Spacing Value for
Greater Tracks

W = Total # of Wedges

do = Initial Position

Finetune Head Posi-
tion Using Servo Pat- | —4604
tern On Discrete Arc

|

Read Data
From e
Discrete Arc

4606

Figure 46

US 9,176,775 B2

(9).t @inbi4

$914Q Z1G I 92Is Juswbes
wnwiui sy} Jl $314q Z1LG pue selq 8r0z o

‘0l8z 01 [enp@ M SSJAG QOSE JO 92ZIS)i} B 10} Soz1S Juawbes sy}

I VN YBnoJu N 1g YoES Y21UM 0} - Uy} Jajealb anjea
WNWILIW & sg ps1oa|as si Y ‘W UBL) SS9 §1 1 Ulslaym

palsanbai aq ‘3Uo 0} [enba 4 ui !4 }Iq U0 }ses| e Si 818y} asnedey .,

Sheet 44 of 47

Nov. 3, 2015

U.S. Patent

Z Jo azis yuawbas e pnoys

wd _IV ON ON oN oN oN oN oN oN OoN SOA oN S9A oN reseassana
_IV 0 0 0 0 0 0 0 0 0 1 0 L 0

SIAG 00SZ = 4 BzIs By
Jo vonejuasasdal Aleuig— 0 0 3 0 0 0 3 l 1 0 0 I 0 mreesesses
g —» L [4 14 8 9l ze 9 j:74" [¢]*14 (4% $zZ0L 8¥0C 9607
¥ 3 14 € 14 g [¢] A 8 [0 n A el sessssssee

0l SIW upRIayMm ‘, Z sl 8213 Juawbag wnuwiuly
ipaysanbai aq s8lAq ¥ pue 's8IAq 9 * S8IA] 8Z| ‘'S91AQ 957 * SBIAG 80T 84 |I!M $8JAQ Q0SZ O 8218 By B o} $82IS Juswibes 8y
 Jo az|s Juswbas e pinoyg } \ljljlj —A

—||V ON ON ON SOA ON ON STIA SOA SOA ON ON EETN oN taseseannn

$8JAQ 00GZ = 4 9215 BjY
Jo uonejuasaidal Aeuig—| 0 0 l 0 0 0 1 1 L 0 0 L 0 vevensenns
Z — ¥ 2 4 14 8 9 A ¥9 : 14 952 4% 201 8¥0Z 960¥
| L 4 € 14 G 9 L 8 6 ot m Fd) €L senssecsns

ON

2

ON

¥C

US 9,176,775 B2

Sheet 45 of 47

Nov. 3, 2015

U.S. Patent

g 2inbi4

‘uoljejuswbely jeulajul 0} anp abelio)s pajsepn

az1g Juswbag wnwiuly

882¥CS zLolEl 89/Z¢ 2618 80z ZLg
L L L L L
B - 00l
B - 0000}
B - 90+9}
B 1 80+3}
Z 10 S1amod JO wing Jo |ensn
- 0L+e}
1zZ1+91
- —— Appng 7
— e 2 JOSIamod jo wng 1o jensn
N 1 1 L 1 1 N P | I L 1 . 1 N M 2 1 M N N 1 | 1 M .V—‘+®—.

aoedg pajsep [e1o)

US 9,176,775 B2

Sheet 46 of 47

Nov. 3, 2015

U.S. Patent

6% 2inbi4

‘wa)shs 9|1} 3y} ul sjuswbes JO Jagquinu |ejo}
9zIS Juswbag wnwiuly
88¢vcS c.L0Lel 89/¢¢

618 8v0¢

[43°3

I I i I ¥

R

Z 10 sieMod Jo wing

- —+— 7 JO SI9MO0d JO WNg Io |ensn
—— [eNsp |

| SRV YN S WY (NS S SN SN UM SN S VU S S

1

00l

00001

90+°}

80+l

0L+3}

1¢+°1

vi+ol

syuswibag Jo Jagunp [elo]

US 9,176,775 B2

Sheet 47 of 47

Nov. 3, 2015

U.S. Patent

0G @.nbi4

| S1Z JO Slamod jo

WiNG pue [ensn Joj Uiy

3|14 Jad syuswbag Jo JaquinN Xep/BAy/UIN

‘a|l} Jad spuswbas jo JaquinN
9z1g Juswbag wnwiulp
88¢CCS clolel 89/¢c¢ 618 - 8y0T ZLe |
7T ¥ T LI 17T T 77 LI . T T LI J T T T T T T T v T —\ A
(lensn)
Xe (wnsg)
A_m%ma N / p _/ _J ‘Bav 1 001
| o NN
@M_\mv emm:w:v :m:w\sv \. o | o) .@:wv ﬂc/zwv AJE:mv Uezwv-
‘DAY B| e
- Bay [qensm| 1| | W | W | xew 00001
I By | gensn)| /7
‘BAY | (jensn) J
B by (ns)| ™\ 7 90+31
oAy | ens [T
‘BaY | (lensn)
- | OV go+ol
- Q1 0L+81
. 1z1+e1
| —+— 7 JO SI9MOd JO WINSg 10 |ensn / n | _
—Een NN
SNV 145"
(lensn) xep

US 9,176,775 B2

1
INTELLIGENT DATA STORAGE AND
PROCESSING USING FPGA DEVICES

CROSS REFERENCE AND PRIORITY CLAIM
TO RELATED APPLICATIONS

This application is a continuation of patent application Ser.
No. 13/344,986, filed Jan. 6, 2012, entitled “Intelligent Data
Storage and Processing Using FPGA Devices”, now U.S. Pat.
No. 8,768,888, which is a continuation of patent application
Ser. No. 10/550,323, entitled “Intelligent Data Storage and
Processing Using FPGA Devices”, now U.S. Pat. No. 8,095,
508, which is a national stage entry of PCT patent application
PCT/US04/16398, entitled “Intelligent Data Storage and Pro-
cessing Using FPGA Devices”, filed May 21, 2004, which
claims the benefit of provisional patent application Ser. No.
60/473,077 entitled “Intelligent Data Storage and Process-
ing”, filed May 23, 2003, the entire disclosures of each of
which are incorporated herein by reference.

This application is related to patent application Ser. No.
13/165,155 and patent application Ser. No. 10/550,326, both
entitled “Intelligent Data Storage and Processing Using
FPGA Devices”, where the Ser. No. 13/165,155 patent appli-
cation is a divisional of the Ser. No. 10/550,326 patent appli-
cation and where the Ser. No. 10/550,326 patent application is
a national stage entry of PCT patent application PCT/US04/
16021, entitled “Intelligent Data Storage and Processing
Using FPGA Devices”, filed May 21, 2004, which claims the
benefit of provisional patent application Ser. No. 60/473,077
entitled “Intelligent Data Storage and Processing”, filed May
23, 2003.

This application is also related to patent application Ser.
No. 10/153,151 entitled “Associative Database Scanning and
Information Retrieval Using FPGA Devices”, filed May 21,
2002, now U.S. Pat. No. 7,139,743, which is a continuation-
in-part of patent application Ser. No. 09/545,472 entitled
“Associative Database Scanning and Information Retrieval”,
filed Apr. 7, 2000, now U.S. Pat. No. 6,711,558, the entire
disclosures of both of which are incorporated herein by ref-
erence.

This patent application is also related to patent application
Ser. No. 345,011, entitled “Intelligent Data Storage and Pro-
cessing Using FPGA Devices”, filed Jan. 6, 2012, now U.S.
Pat. No. 8,751,452.

BACKGROUND AND SUMMARY OF THE
INVENTION

Indications are that the average database size and associ-
ated software support systems are growing at rates that are
greater than the increase in processor performance (i.e., more
than doubling roughly every 18 months). This is due to a
number of factors including without limitation the desire to
store more detailed information, to store information over
longer periods of time, to merge databases from disparate
organizations, and to deal with the large new databases which
have arisen from emerging and important applications. For
example, two emerging applications having large and rapidly
growing databases are those connected with the genetics
revolution and those associated with cataloging and accessing
information on the Internet. In the case of the Internet, current
industry estimates are that in excess of 1.5 million pages are
added to the Internet each day. At the physical level this has
been made possible by the remarkable growth in disk storage
performance where magnetic storage density has been dou-
bling every year or so for the past five years.

10

15

20

25

30

35

40

45

50

55

60

65

2

Search and retrieval functions are more easily performed
on information when it is indexed. For example, with respect
to financial information, it can be indexed by company name,
stock symbol and price. Oftentimes, however, the informa-
tion being searched is of a type that is either hard to categorize
or index or which falls into multiple categories. As a result,
the accuracy of a search for information is only as good as the
accuracy and comprehensiveness of the index created there-
for. In the case of the Internet, however, the information is not
indexed. The bottleneck for indexing is the time taken to
develop the reverse index needed to access web pages in
reasonable time. For example, while there are search engines
available, designing a search which will yield a manageable
result is becoming increasingly difficult due to the large num-
ber of “hits” generated by less than a very detailed set of
search instructions. For this reason, several “intelligent”
search engines have been offered on the web, such as Google,
which are intended to whittle down the search result using
logic to eliminate presumed undesired “hits”.

With the next-generation Internet, ever-faster networks,
and expansion of the Internet content, this bottleneck is
becoming a critical concern. Further, it is becomingly exceed-
ingly difficult to index information on a timely basis. In the
case of the Internet, current industry estimates are that in
excess of 1.5 million pages are added to the Internet each day.
As a result, maintaining and updating a reverse index has
become an enormous and continuous task and the bottleneck
it causes is becoming a major impediment to the speed and
accuracy of existing search and retrieval systems. Given the
ever increasing amounts of information available, however,
the ability to accurately and quickly search and retrieve
desired information has become critical.

Associative memory devices for dealing with large data-
bases are known in the prior art. Generally, these associative
memory devices comprise peripheral memories for comput-
ers, computer networks, and the like, which operate asyn-
chronously to the computer, network, etc. and provide
increased efficiency for specialized searches. Additionally, it
is also known in the prior art that these memory devices can
include certain limited decision-making logic as an aid to a
main CPU in accessing the peripheral memory. An example
of'such an associative memory device particularly adapted for
use with a rotating memory such as a high speed disk or drum
can be found in U.S. Pat. No. 3,906,455, the disclosure of
which is incorporated herein by reference. This particular
device provides a scheme for use with a rotating memory and
teaches that two passes over a memory sector is necessary to
presort and then sort the memory prior to performing any
logical operations thereon. Thus, this device is taught as not
being suitable for use with any linear or serial memory such as
magnetic tape or the like.

Other examples of prior art devices may also be found in
U.S. Pat. Nos. 3,729,712; 4,464,718; 5,050,075; 5,140,692;
and 5,721,898; the disclosures of which are incorporated
herein by reference.

As an example, in U.S. Pat. No. 4,464,718, Dixon performs
fixed comparisons on a fixed number of bytes. They don’t
have the ability to scan and correlate arbitrarily over the data.
They search serially along the tracks in a given disk cylinder
but there is no provision for parallel searching across disks.
Dixon’s comparisons are limited by a fixed rigid number of
standard logical operation types. Additionally, the circuitry
presented supports only these single logical operations. There
is no support for approximate or fuzzy matching.

While these prior art associative memory devices represent
an attempt to speed the input and output of information to and
from a peripheral memory, which in many cases is a mass

US 9,176,775 B2

3

storage memory device, all rely on the classic accessing of
data stored in digital form by reading and interpreting the
digital either address or content of the memory location. In
other words, most such devices access data by its address but
there are some devices that take advantage of the power of
content addressing as is well known in the art. Nevertheless,
in all of the prior art known to the inventors, the digital value
of the address or data contained in the addressed location
must be read and interpreted in its digital form in order to
identify the data and then select it for processing. Not only
does it take processing time to read and interpret the digital
data represented by the address or content, this necessarily
requires that the accessing circuit process the memory
according to the structure of the data stored. In other words, if
the data is stored in octets, then the accessing circuitry must
access the data in octets and process it in an incremental
manner. This “start and stop” processing serves to increase
the input/output time required to access data. As is also well
known in the art, this input/output time typically represents
the bottleneck and effective limitation of processing power in
any computer or computer network.

Furthermore, given the vast amount of information avail-
able to be searched, data reduction and classification opera-
tions (e.g., the ability to summarize data in some aggregate
form) has become critical. Oftentimes, the ability to quickly
perform data reduction functions can provide a company with
a significant competitive advantage.

Likewise, with the improvements in digital imaging tech-
nology, the ability to perform two dimensional matching such
as on images has become necessary. For example, the ability
to conduct matches on a particular image of an individual,
such as his or her face or retina, or on a fingerprint, is becom-
ing critical to law enforcement as it steps up its efforts on
security in light of the Sep. 11, 2001 terrorist attacks. Image
matching is also of importance to the military in the area of
automatic target recognition.

Finally, existing searching devices cannot currently be
quickly and easily reconfigured in response to changing
application demands.

Accordingly, there is a need for an improved information
search and retrieval system and method which overcomes
these and other problems in the prior art.

As described in parent application Ser. No. 10/153,151, in
order to solve these and other problems in the prior art,
inventors herein have succeeded in designing and developing
a method and apparatus for an associative memory using
Field Programmable Gate Arrays (FPGA) in several embodi-
ments which provide an elegantly simple solution to these
prior art limitations as well as dramatically decreased access
times for data stored in mass storage memories. As described
therein, the invention of the Ser. No. 10/153,151 patent appli-
cation has several embodiments each of which has its own
advantages. Grandparent patent application Ser. No. 09/545,
472, now U.S. Pat. No. 6,711,558, discloses and claims the
use of programmable logic and circuitry generally without
being specific as to any choice between the various kinds of
devices available for this part of the invention. In the Ser. No.
10/153,151 application, the inventors disclosed more specifi-
cally the use of FPGA’s as part of the circuitry for various
reasons as their best mode. An important reason amongst
others is speed. And, there are two different aspects of opera-
tion in which speed plays a part. The first of these is the speed
of reconfiguration. It is known in the art that FPGA’s may be
quickly programmed in the field to optimize the search meth-
odology using a template, the template having been prepared
in advance and merely communicated to the FPGA’s over a
connecting bus. Should it then be desired to search using a

10

15

20

25

30

35

40

45

50

55

60

65

4

different methodology, the FPGA’s may then be quickly and
conveniently re-programmed with another prepared template
in a minimal number of clock cycles and the second search
started immediately. Thus, with FPGA’s as the re-config-
urable logic, shifting from one search to another is quite easy
and quick, relative to other types of re-programmable logic
devices.

A second aspect of speed is the amount of time, once
programmed, that a search requires. As FPGA’s are hardware
devices, searching is done at hardware processing speeds
which is orders of magnitude faster than at software process-
ing speeds as would be experienced with a microprocessor,
for example. Thus, FPGA’s are desirable over other software
implementations where speed is a consideration as it most
often is.

In considering the use of templates, the Ser. No. 10/153,
151 application discloses that at least several “generic” tem-
plates can be prepared in advance and made available for use
in performing text searching in either an absolute search, an
approximate search, or a higher or advanced search mode
incorporating a Boolean algebra logic capability, or a graph-
ics search mode. These could then be stored in a CPU memory
and be available either on command or loaded in automati-
cally in response to a software queue indicating one of these
searches.

Still another factor to consider is cost, and the recent price
reductions in FPGA’s have made them more feasible for
implementation as a preferred embodiment for this applica-
tion, especially as part of a hard disk drive accelerator as
would be targeted for a pc market. It is fully expected that
further cost reductions will add to the desirability of these for
this implementation, as well as others as discussed in greater
detail below.

Generally, the invention of the Ser. No. 10/153,151 appli-
cation may be described as a technique for data retrieval
through approximate matching of a data key with a continu-
ous reading of data as stored on a mass storage medium, using
FPGA’s to contain the template for the search and do the
comparison, all in hardware and at essentially line speed. By
utilizing FPGA’s, the many advantages and features com-
monly known are made available. These include the ability to
arrange the FPGA’s in a “pipeline” orientation, in a “parallel”
orientation, or even in an array incorporating a complex web
overlay of interconnecting data paths allowing for complex
searching algorithms. In its broadest, and perhaps most pow-
erful, embodiment, the data key may be an analog signal and
it is matched with an analog signal generated by a typical
read/write device as it slews across the mass storage medium.
In other words, the steps taught to be required in the prior art
of not only reading the analog representation of digital data
stored on the mass storage medium but also the conversion of
that signal to its digital format prior to being compared are
eliminated. Furthermore, there is no requirement that the data
be “framed” or compared utilizing the structure or format in
which the data has been organized and stored. For an analog
signal, all that need be specified is the elapsed time of that
signal which is used for comparison with a corresponding and
continuously changing selected time portion of the “read”
signal. Using any one of many standard correlation tech-
niques as known in the prior art, the data “key” may then be
approximately matched to the sliding “window” of data sig-
nal to determine a match. Significantly, the same amount of
data may be scanned much more quickly and data matching
the search request may be determined much more quickly as
well. For example, the inventors have found that CPU based
approximate searches of 200 megabytes of DNA sequences
can take up to 10 seconds on a typical present day “high end”

US 9,176,775 B2

5

system, assuming the offline processing to index the database
has already been completed. In that same 10 seconds, the
inventors have found that a 10-gigabyte disk could be
searched for approximate matches using the present inven-
tion. This represents a 50:1 improvement in performance.
Furthermore, in a typical hard disk drive there are four sur-
faces and corresponding read/write heads, which may be all
searched in parallel should each head be equipped with the
present invention. As these searches can proceed in parallel,
the total increase in speed or improvement represents a 200:1
advantage. Furthermore, additional hard disk drives may be
accessed in parallel and scaled to further increase this speed
advantage over conventional systems.

By choosing an appropriate correlation or matching tech-
nique, and by setting an appropriate threshold, the search may
be conducted to exactly match the desired signal, or more
importantly and perhaps more powerfully, the threshold may
be lowered to provide for approximate matching searches.
This is generally considered a more powerful search mode in
that databases may be scanned to find “hits” which may be
valid even though the data may be only approximately that
which is being sought. This allows searching to find data that
has been corrupted, incorrectly entered data, data which only
generally corresponds to a category, as well as other kinds of
data searches that are highly desired in many applications.
For example, a library of DNA sequences may be desired to
be searched and hits found which represent an approximate
match to a desired sequence of residues. This ensures that
sequences which are close to the desired sequence are found
and not discarded but for the difference in a forgivable num-
ber of residue mismatches. Given the ever-increasing volume
and type of information desired to be searched, more complex
searching techniques are needed. This is especially true in the
area of molecular biology, “[O]ne of the most powerful meth-
ods for inferring the biological function of a gene (or the
protein that it encodes) is by sequence similarity searching on
protein and DNA sequence databases.” Garfield, “The Impor-
tance of (Sub)sequence Comparison in Molecular Biology,”
pgs. 212-217, the disclosure of which is incorporated herein
by reference. Current solutions for sequence matching are
only available in software or non-reconfigurable hardware.

Still another application involves Internet searches pro-
vided by Internet search engines. In such a search, approxi-
mate matching allows for misspelled words, differently
spelled words, and other variations to be accommodated
without defeating a search or requiring a combinatorial num-
ber of specialized searches. This technique permits a search
engine to provide a greater number of hits for any given
search and ensure that a greater number of relevant web pages
are found and cataloged in the search. Although, as men-
tioned above, this approximate matching casts a wider net
which produces a greater number of “hits” which itself cre-
ates its own problems.

Still another possible application for this inventive tech-
nology is for accessing databases which may be enormous in
size or which may be stored as analog representations. For
example, our society has seen the implementation of sound
recording devices and their use in many forums including
judicial proceedings. In recent history, tape recordings made
in the President’s oval office have risen in importance with
respect to impeachment hearings. As can be appreciated, tape
recordings made over the years of a presidency can accumu-
late into a huge database which might require a number of
persons to actually listen to them in order to find instances
where particular words are spoken that might be of interest.
Utilizing this inventive technology, an analog representation
of that spoken word can be used as a key and sought to be

20

25

40

45

55

6

matched while the database is scanned in a continuous man-
ner and at rapid speed. Thus, the present and parent inventions
provide a powerful search tool for massive analog databases
as well as massive digital databases.

While text-based searches are accommodated by the
present and parent inventions as described above, storage
media containing images, sound, and other representations
have traditionally been more difficult to search than text. The
present and parent inventions allow searching a large data
base for the presence of such content or fragments thereof.
For example, the key in this case could be a row or quadrant
of pixels that represent the image being sought. Approximate
matching of the key’s signal can then allow identification of
matches or near matches to the key. In still another image
application, differences in pixels or groups of pixels can be
searched and noted as results which can be important for
satellite imaging where comparisons between images of the
same geographic location are of interest as indicative of
movement of equipment or troops.

The present and parent inventions may be embodied in any
of' several configurations, as is noted more particularly below.
However, one important embodiment is perhaps in the form
of'a disk drive accelerator which would be readily installed in
any PC as an interface between the hard disk drive and the
system bus. This disk drive accelerator could be provided
with a set of standardized templates and would provide a
“plug and play” solution for dramatically increasing the
speed at which data could be accessed from the drive by the
CPU. This would be an after market or retrofit device to be
sold to the large installed base of PC’s. It could also be
provided as part of a new disk drive, packaged within the
envelope of the drive case or enclosure for an external drive or
provided as an additional plug in pc card as an adapter for an
internal drive. Additional templates for various kinds of
searches on various kinds of databases could be made avail-
able either with the purchase of the accelerator, such as by
being encoded on a CD, or even over the Internet for down-
load, as desired.

The present invention extends the novel groundbreaking
technology disclosed in the parent application Ser. Nos.
09/545,472 and 10/153,151 such that a programmable logic
device (PLD) such as an FPGA performs any of a variety of
additional processing operations including but not limited to
operations such as encryption, decryption, compression, and
decompression. Thus, the technology of the parent applica-
tions has been extended such that PL.Ds perform data manipu-
lation operations. As used herein, the term “manipulating” or
“manipulation” refers to the performance of a search opera-
tion, a reduction operation, or a classification operation on
data in combination with any or all of a compression opera-
tion, a decompression operation, an encryption operation,
and a decryption operation also performed on the data, or the
performance of a compression operation or a decompression
operation on data alone or in combination with any or all of a
search operation, a reduction operation, a classification
operation, an encryption operation, and a decryption opera-
tion also performed on the data. Not only can these manipu-
lation operations be performed at very high speeds due to the
inventive techniques disclosed herein, but these operations,
when implemented on a PLD such as an FPGA as disclosed
herein also enhance data security by protecting the unen-
crypted and/or decompressed data from being accessed or
read by any viruses or malware that may be running in the
software of the computer system and using the re-config-
urable logic to process stored data. Among the more powerful
applications for the present invention is to perform high speed
searches within encrypted data, which can be referred to as

US 9,176,775 B2

7

crypto-searching. With crypto-searching, the stream of
encrypted data is processed to first decrypt the data stream
and then perform a search operation within the decrpyted
data.

The value of data security to data owners cannot be under-
estimated and is ever-increasing in importance, and the ability
to control who has access to what data and when lies at the
heart of data security. Among its many unique applications,
the present invention provides flexibility to data owners in
controlling who has access to their data, and speed in provid-
ing authorized users with access to that data (or targeted
access to a portion of that data through scanning capabilities).

Further still, the use of compression and/or decompression
as described herein allows data to be stored in a manner that
takes up less space in the mass storage medium, while still
retaining the ability to search through the data at high speeds.

Preferably, these manipulation operations, when imple-
mented with multiple stages, are implemented in a pipelined
manner. In particular, the combination of one or more stages
dedicated to encryption/decryption or compression/decom-
pression with one or more stages dedicated to data searching
or data reduction synergistically produces an intelligent, flex-
ible, high speed, and secure design technique for data storage
and retrieval.

Further still, disclosed herein is a novel and unique tech-
nique for storing data on a magnetic medium such as a com-
puter hard disk so that large amounts of data can be read
therefrom without being significantly disadvantaged by the
disk storage system’s “seek” times. In accordance with this
feature of the invention, data is stored on the magnetic
medium as a plurality of discontiguous arcs positioned on the
magnetic medium, preferably in a helical or spiral pattern.
When a system employing a PLD for searching and/or addi-
tional processing, as described herein, is used in combination
with a mass storage medium that employs data stored in a
piecewise helical fashion, as described herein, this combina-
tion synergistically results in ever greater processing speeds.

Further still, a novel technique for storing data files in
memory is disclosed herein, wherein a data file is stored using
a sum of powers of 2 technique. The combination of data file
storage using this sum of powers of 2 technique with the data
processing capabilities of the re-configurable logic platform
described herein also synergistically results in enhanced pro-
cessing speeds.

While the principal advantages and features of the present
invention have been briefly explained above, a more thorough
understanding of the invention may be attained by referring to
the drawings and description of the preferred embodiment
which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1isablock diagram illustrating an information search
and retrieval system in accordance with one embodiment;

FIG. 2 is a schematic of a conventional rigid disk drive
system illustrating different insertion points for connection of
the inventive system;

FIG. 3 is a block diagram of one embodiment of the trans-
formation of a search inquiry processed by the system of FIG.
1

FIG. 41is a block diagram of one embodiment of a hardware
implementation used to conduct an exact match search in a
digital domain;

FIG. 5is ablock diagram of one embodiment of a hardware
implementation used to conduct an approximate match
search in a digital domain;

20

25

30

40

45

50

55

8

FIG. 6 is a block diagram depicting the implementation of
the inventive system in a stand-alone configuration;

FIG. 71is ablock diagram depicting an inventive implemen-
tation as a shared remote mass storage device across a net-
work;

FIG. 8is a block diagram depicting an inventive implemen-
tation as a network attached storage device (NASD);

FIG. 9 is a flowchart detailing the logical steps for search-
ing and retrieving data from a magnetic storage medium;

FIG. 10 is a graphical representation of an analog signal as
might be used as a data key;

FIG. 11 is a graphical representation of an analog signal
representing the continuous reading of data from a magnetic
storage medium in which the data key is present;

FIG. 12 is a graphical representation of the signal of FIG.
10 overlying and matched to the signal of FIG. 11;

FIG. 13 is a graphical representation of a correlation func-
tion calculated continuously as the target data in the magnetic
storage medium is scanned and compared with the data key;

FIG. 14 is a graphical representation of a correlation func-
tion as the data key is continuously compared with a signal
taken from reading a different set of target data from the
magnetic storage medium but which also contains the data
key;

FIG. 15 is one embodiment of a table generated by the
present invention for use in performing sequence matching
operations;

FIG. 16 is a block diagram of one embodiment of a systolic
array architecture that can be used by the inventive system to
compute the values of the table of FIG. 15;

FIGS. 17 and 18 are block diagrams of the systolic array
architecture of FIG. 15 in operation during the combinatorial
and latch part of the clock cycle, respectively, of the system of
FIG. 1,

FIG. 19 is the table of FIG. 15 representing a particular
sequence matching example;

FIG. 20 is a block diagram of'the systolic array architecture
of FIG. 16 for the example of FIG. 19;

FIGS. 21 and 22 are block diagrams of the systolic array
architecture of FIG. 20 in operation during the combinatorial
and latch part of the clock cycle, respectively, of the system of
FIG. 1,

FIG. 23 is a block diagram of one embodiment of a systolic
array architecture that can be used by the inventive system in
performing image matching operations;

FIG. 24 is a block diagram of another arrangement for the
systolic array architecture in performing image matching
operations;

FIG. 25 is a block diagram of one embodiment of an
individual cell of the systolic array shown in FIG. 23;

FIG. 26 is a block diagram of another embodiment of an
individual cell of the systolic array shown in FIG. 23;

FIG. 27 is a block diagram showing an example using the
inventive system for performing data reduction operations;
and

FIG. 28 is a block diagram showing a more complex
arrangement of FPGA’s;

FIGS. 29 and 30 illustrate exemplary embodiments for
multi-stage processing pipelines implemented on a re-config-
urable logic device;

FIG. 31 illustrates an encryption engine implemented on a
re-configurable logic device;

FIG. 32 illustrates another exemplary embodiment for a
multi-stage processing pipeline implemented on a re-config-
urable logic device;

FIGS. 33-35 illustrate various encryption engines that can
be implemented on re-configurable logic;

US 9,176,775 B2

9

FIG. 36 illustrates a three party data warehousing scenario;

FIG. 37 illustrates a non-secure data warehousing decryp-
tion scenario;

FIGS. 38-39(5) illustrate various exemplary embodiments
for secure data delivery in a data warehousing scenario;

FIGS. 40-42 illustrate various exemplary embodiments for
implementing compression and/or decompression on a re-
configurable logic device;

FIG. 43 depicts a process flow for creating a template to be
loaded onto a re-configurable logic device;

FIGS. 44(a) and (b) illustrate a conventional hard disk
using circular tracks and a disk drive system for use therewith;

FIG. 45 illustrates a novel planar magnetic medium having
discrete circular arcs arranged in a helical pattern;

FIG. 46 illustrates a head positioning flow for reading data
from the magnetic medium of FIG. 45; and

FIGS. 47(a) and (b) illustrate two embodiments of a sum of
powers of 2 file system;

FIGS. 48-50 plot various performance characteristics for a
sum of powers of 2 file system.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

As shown in FIG. 1, the present invention is readily imple-
mented in a stand-alone computer or computer system. In
broad terms, the invention is comprised of at least one re-
configurable logic device 21 coupled to at least one magnetic
mass storage medium 26, with that re-configurable logic
device being an FPGA. As depicted in FIG. 1, the re-config-
urable logic device 21 may itself include a plurality of func-
tional logic elements including a data shift register and pos-
sibly a microprocessor, or they could be on separate chips, or
the individual logic elements could be configured in a pipe-
line or parallel orientation as shown in some of the other
figures herein. In any event, re-configurable logic refers to
any logic technology whose form and function can be signifi-
cantly altered (i.e., reconfigured) in the field post-manufac-
ture. Examples of re-configurable logic devices include with-
out limitation programmable logic devices (PLDs). APLD is
anumbrellaterm for a variety of chips that are programmable.
There are generally three physical structures for a PLD. The
first is the permanent fuse type which blows apart lines or
fuses them together by electrically melting an aluminum trace
or insulator. This was the first type of PLD, known as a
“programmable array logic” or PAL. The second type of PLD
uses EEPROM or flash memory, and causes a transistor to
open or close depending on the contents of its associated
memory cell. The third type of PLD is RAM-based (which
makes it dynamic and volatile), and its contents are loaded
each time it starts up. An FPGA 1is an integrated circuit (IC)
that contains an array of logic units that can be interconnected
in an arbitrary manner. These logic units are referred to as
CLB’s or configurable logic blocks by one vendor (Xilinx).
Both the specific function of each logic unit and the intercon-
nections between logic units can be programmed in the field
after manufacture of the IC. FPGAs are one of the most
common PLD chips. FPGAs are available in all three struc-
tures. The box labeled in FIG. 1 for reconfigurable logic
device 21 is meant to convey that not only can the task
performed by reconfigurable logic device 20 be implemented
in reconfigurable hardware logic, but the tasks of the data shift
register 24 and/or control microprocessor 22 may also option-
ally be implemented in the reconfigurable hardware logic of
reconfigurable logic device 21. In the preferred embodiment
of the present invention, re-configurable logic device 21 is
constructed using Xilinx FPGA technology, and its configu-

10

20

30

40

45

10

ration is developed using the Mentor synthesis tools or Syn-
plicity synthesis tools and the Xilinx place-and-route tools,
all of which are presently commercially available as known to
those of skill in the art.

The re-configurable logic device 21 interfaces with the
system or input/output bus 34 and, in one configuration, also
interfaces with any disk caches 30 which may be present. It
receives and processes search requests or inquires from the
CPU 32 or network interface 36. Additionally, the device may
aid in passing the results of the inquiries to either or both the
disk cache 30 and/or the CPU 32 (by way of the bus 34).

The mass storage medium 26 provides the medium for
storing large amounts of information which will hereafter be
referred to as target data. The term “mass storage medium”
should be understood as meaning any device used to store
large amounts of data, and which is typically designated for
use in a computer or computer network. Examples include
without limitation hard disk drives, optical storage media, or
sub-units such as a single disk surface, and these systems may
be rotating, linear, serial, parallel, or various combinations of
each. For example, a rack of hard disk drive units could be
connected in parallel and their parallel output provided at the
transducer level to one or more re-configurable logic devices
21. Similarly, a bank of magnetic tape drives could be used,
and their serial outputs each provided in parallel to one or
more re-configurable logic devices 21. The data stored on the
medium may be in analog or in digital form. For example, the
data could be voice recordings. The invention is thus scalable,
permitting an increase in the amount of data stored by increas-
ing the number of parallel mass storage media, while preserv-
ing the performance by increasing the number of parallel
re-configurable logic devices or replicating the re-config-
urable logic device.

In the prior art as shown in the upper portion of FIG. 1,
typically a disk controller 28 and/or a disk cache 30 may be
used in the traditional sense for access by a CPU 32 over its
system or input/output bus 34. The re-configurable logic
device 21 accesses target data in the mass storage medium 26
via one or more data shift registers 24 and presents it for use
at the system bus 34 without moving large blocks of memory
from the mass storage medium 26 over the system bus 34 and
into the working memory 33 of CPU 32 for sorting and
accessing. In other words, as is explained in greater detail
below, the CPU 32 may send a search request or inquiry to the
re-configurable logic device 21 which then asynchronously
accesses and sorts target data in the mass storage medium 26
and presents it for use either in a disk cache 30 as is known in
the prior art or directly onto the system bus 34 without further
processing being required by CPU 32 or use of its working
memory 33. The CPU 32 is thus free to perform other tasks
while the searching and matching activity is being performed
by the invention. Alternately, the control microprocessor may
provide the search inquiry and template or programming
instructions for the FPGA 21, and then perform the search and
present the data on system bus 34 for access and use by CPU
32.

As has been explained above, the invention may be used to
perform avariety of different types of matching or data reduc-
tion operations on the target data. Each one of these opera-
tions will now be discussed in detail below. For all operations,
however, it will be assumed that the target data is written onto
the magnetic mass storage medium 26 with sufficient format-
ting information attached so that the logical structure of the
target data can be extracted. Exact and approximate string
matching will be described with reference to FIGS. 2-5. It can
be appreciated, however, that the invention is not limited to
single string matches and is equally suitable for compound

US 9,176,775 B2

11

query matching (i.e., queries involving a plurality of text
strings having a certain logical relationship therebetween or
which use Boolean algebra logic). When performing an exact
match with the re-configurable logic device 21 in the analog
domain, shown as Point A in FIG. 2, where matching is done
using analog comparators and correlation techniques, an
exact match corresponds to setting a sufficiently high thresh-
old value for matching the data key with analog target data on
the mass storage medium 26. Approximate matching in the
analog domain corresponds to setting appropriate (lesser)
threshold values. The success of an approximate match may
be determined by the correlation value set in the re-config-
urable logic device 21 or by using one of a number of match-
ing-performance metrics stored therein such as the number of
bits within a data key that are equal to the corresponding bits
in the scanned target data.

More particularly, a conventional rigid disk drive may have
aplurality of rotating disks with multiple transducers access-
ing each disk. Each of these transducers typically has its
output feeding analog signal circuitry 18, such as amplifiers.
This is represented at point A. As further shown in FIG. 2,
typically the outputs of the analog circuitry are selectively
provided to a single digital decoder 23 which then processes
one such output. This is represented at point B. This digital
output is typically then sent through error correction circuitry
(ECC) 25 and at its output C is then passed on to the bus 34 or
disk cache 30. For purposes of the invention, it may be desir-
able to provide multiple parallel paths for target data by
providing multiple digital decoders and ECC’s. Exact match-
ing in the digital domain could be performed at Point B or
Point C, which corresponds to the pre- and post-error-cor-
rected digital signal, respectively.

The results may be sent to a control microprocessor 22,
which may or may not be configured as part of an FPGA, to
execute logic associated with a compound or complex search
inquiry. In the most general case, a compound search inquiry
40 will go through the transformation process illustrated in
FIG. 3. In particular, the software system (not shown) that
resides on the CPU 32 generates the search inquiry 40. This
inquiry proceeds through a compiler 42, also located on the
CPU 32, that is responsible for analyzing the search inquiry.
There are three main results from this analysis: (1) determin-
ing the data key that will reside in the compare registers
within the re-configurable logic device 21; (2) determining
the combining logic that must be implemented in the control
microprocessor 22; and (3) producing hardware description
44 in a standard hardware description language (HDL) format
(or if possible retrieving one from a library) that will be used
to generate synthesis commands 46 to the re-configurable
logic device 21. Any commercially available HDL and asso-
ciated compiler and synthesis tools may be used. The result-
ing logic functions may correspond to exact or inexact
matches or wildcard operations and simple word level logic
operations such as “and” and “or.” This synthesis information
is sent to the control microprocessor 22 which acts to set up
the re-configurable logic device 21, or FPGA. In the case of
complex logic operations, a high-level language 48 such as C
or C++ is used in conjunction with a compiler 50 to generate
the appropriate synthesis commands to the microprocessor
22.

While the path shown in FIG. 3 is able to handle a wide
range of potential search inquiries, it has the drawback that
the latency introduced into the search process might be too
long. If the time required for a search inquiry to flow through
the transformations represented in FI1G. 3 is of the same order
as the time required to perform a search, the compilation
process might become the performance bottleneck rather than

10

15

20

25

30

35

40

45

50

55

60

65

12

the search itself. This issue can be addressed for a wide range
of'likely search inquiries by maintaining a set of precompiled
hardware templates that handle the most common cases.
These templates may be provided and maintained either in
CPU 32 memory, made available through an off-line storage
medium such as a CD, or even kept in the mass storage
medium 26 itself. Still further, such templates may be com-
municated to CPU 32 such as over a network or the Internet.

One embodiment of such a hardware template 29 is illus-
trated in FIG. 4. In particular, the data shift register 27 con-
tains target data streaming off the head (not shown) of one or
more disks 19. A compare register stores the data key for
which the user wishes to match. In the example shown, the
data key is “Bagdad.” Fine-grained comparison logic device
31 performs element by element comparisons between the
elements of'the data shift register 27 and the compare register
35. The fine-grained comparison logic device 31 can be con-
figured to be either case sensitive or case insensitive. Word-
level comparison logic 37 is responsible for determining
whether or not a match at the world-level occurs. In the case
of'a compound search inquiry, the word-level match signals
are delivered to the control microprocessor 22 for evaluation
thereof. A match to the compound search inquiry is then
reported to the CPU 32 for further processing.

One embodiment of a hardware template for conducting
approximate matching is illustrated in FIG. 5. In particular,
the data shift register 27' contains target data streaming off the
head (not shown) of one or more disks 19'. A compare register
35' stores the data key for which the user wishes to match. In
the example shown, the data key is again “Bagdad.” Fine-
grained comparison logic 31' performs element by element
comparisons between the elements of the data shift register
27" and the compare register 21'. Again, the fine-grained com-
parison logic device 31' can be configured to be either case
sensitive or case insensitive. The template 29' provides for
alternate routing of elements in data shift register 27" to indi-
vidual cells of the fine-grained comparison logic device 21'.
Specifically, each cell of the fine-grained comparison logic
device 31' can match more than one position in the data shift
register 27" such that the compare register 21' can match both
the commonly used spelling of “Baghdad” as well as the
alternate “Bagdad” in shared hardware. Word-level compari-
son logic 37" is responsible for determining whether or not a
match at the word level occurs. In the case of a compound
search inquiry, the word-level match signals are delivered to
the control microprocessor 22 for evaluation thereof. A match
to the compound search inquiry is then reported to the CPU 32
for further processing.

The actual configuration of the hardware template will of
course vary with the search inquiry type. By providing a small
amount of flexibility in the hardware templates (e.g., the
target data stored in the compare registers, the routing of
signals from the data shift registers and compare register
elements to the cells of the fine-grained comparison logic
device, and the width of the word-level comparison logic),
such a template can support a wide range of word matches. As
a result, this diminishes the frequency with which the full
search inquiry transformation represented in FIG. 3 must take
place, which in turn, increases the speed of the search.

It should be noted that the data entries identified in an
“approximate” match search will include the “exact” hits that
would result from an “exact” search. For clarity, when the
word “match” is used, it should be understood that it includes
a search or a data result found through either of an approxi-
mate search or an exact search. When the phrase “approxi-
mate match” or even just “approximate” is used, it should be
understood that it could be either of the two searches

US 9,176,775 B2

13

described above as approximate searches, or for that matter
any other kind of “fuzzy” search that has a big enough net to
gather target data that are loosely related to the search inquiry
orin particular, data key. Of course, an exact match is just that,
and does not include any result other than an exact match of
the search inquiry with a high degree of correlation.

Also shown in FIG. 1 is a network interface 36 intercon-
necting the present invention to a network 38 which may be a
LAN, WAN, Internet, etc. and to which other computer sys-
tems 40 may be connected. With this arrangement, other
computer systems 40 may conveniently also access the data
stored on the mass storage medium 26 through the present
invention 21. More specific examples are given below. Still
further as shown in FIG. 1, the elements 20-24 may them-
selves be packaged together and form a disk drive accelerator
that may be separately provided as a retrofit device for adapt-
ing existing pc’s having their own disk drives with the advan-
tages of the invention. Alternately, the disk drive accelerator
may also be offered as an option on a hard drive and packaged
in the same enclosure for an external drive or provided as a
separate pc board with connector interface for an internal
drive. Still further alternatively, the disk drive accelerator
may be offered as an option by pc suppliers as part of a pc
ordered by a consumer, business or other end user. Still
another embodiment could be that of being offered as part of
a larger magnetic mass storage medium, or as an upgrade or
retrofit kit for those applications or existing installations
where the increased data handling capability could be used to
good advantage.

As shown in FIGS. 6-8, the invention may be implemented
in a variety of computer and network configurations. As
shown in FIG. 6, the invention may be provided as part of a
stand-alone computer system 41 comprising a CPU 43 con-
nected to a system bus 45 which then accesses a mass storage
medium 47 having the invention as disclosed herein.

As shown in FIG. 7, the mass storage medium 51 coupled
with the invention may be itself connected directly to a net-
work 52 over which a plurality of independent computers or
CPU’s 54 may then access the mass storage medium 51. The
mass storage medium 51 may itself be comprised of a bank of
hard disk drives comprising a RAID, disk farm, or some other
massively parallel memory device configuration to provide
access and approximate matching capabilities to enormous
amounts of data at significantly reduced access times.

As shown in FIG. 8, a mass storage medium 56 coupled
with the invention may be connected to a network 58 as a
network attached storage device (NASD) such that over the
network 58 a plurality of stand-alone computers 60 may have
access thereto. With such a configuration, it is contemplated
that each mass storage medium, represented for illustrative
purposes only as a disk 57, would be accessible from any
processor connected to the network. One such configuration
would include assigning a unique IP address or other network
address to each mass storage medium.

The configurations as exemplified by those shown in FIGS.
1 and 6-8 represent only examples of the various computer
and network configurations with which the invention would
be compatible and highly useful. Others would be apparent to
those having skill in the art and the present invention is not
intended to be limited through the examples as shown herein
which are meant to be instead illustrative of the versatility of
the present invention.

As shown in FIG. 9, the method of the invention for use in
exact or approximate matching is described alternatively with
respect to whether an analog or digital data domain is being
searched. However, beginning at the start of the method, a
CPU performs certain functions during which it may choose

5

10

15

20

25

30

35

40

45

50

55

60

65

14

to access target data stored in a mass storage medium. Typi-
cally, the CPU runs a search inquiry application 62 which
may be representative of a DNA search, an Internet search, an
analog voice search, a fingerprint search, an image search, or
some other such search during which an exact or approximate
match to target data is desired. The search inquiry contains
directives specitying various parameters which the disk con-
trol unit 28 and the re-configurable logic device 20 must have
to properly obtain the data key from the mass storage medium
26. Examples of parameters include but are not limited to the
following: the starting location for scanning the storage
device; the final location after which (if there is not match)
scanning is terminated; the data key to be used in the scan-
ning; a specification of the approximate nature of the match-
ing; and what information should be returned when a match
occurs. The sort of information that can be returned includes
the address of the information where the match was found, or
a sector, record, portion of record or other data aggregate
which contains the matched information. The data aggregate
may also be dynamically specified in that the data returned on
a match may be specified to be between bounding data speci-
fiers with the matched data contained within the bounding
field. As the example in FIG. 5 shows, looking for the word
“bagdad” in a string of text might find the approximate match,
due to misspelling, of the word “Baghdad”, and return a data
field which is defined by the surrounding sentence. Another
query parameter would indicate whether the returned infor-
mation should be sent to the system or input/output bus 34, or
the disk cache 30.

Referring back to FIG. 9, the search inquiry will typically
result in the execution of one or more operating system utili-
ties. As an example of a higher level utility command, for the
UNIX operating system, this could be modified versions of
glimpse, find, grep, apropos, etc. These functions cause the
CPU to send commands 66 such as search, approximate
search, etc., to the re-configurable logic device 21 with rel-
evant portions of these commands also being sent to the disk
controller 28 to, for example, initiate any mass storage
medium positioning activity 69 that is later required for prop-
erly reading target data from the mass storage medium.

At this point, depending upon the particular methodology
desired to be implemented in the particular embodiment of
the invention, it would be necessary that an analog or digital
data key is determined. This data key, which can be either
exact or approximate for a text search, corresponds to the data
being searched for. For an analog data key, it may either be
pre-stored such as in the mass storage medium, developed
using dedicated circuitry, or required to be generated. Should
the analog data key be pre-stored, a send pre-stored data key
step 68 would be performed by the microprocessor 22 (see
FIG. 1) which would transmit the data key in digital and
sampled format to the re-configurable logic device 20 as
shown in step 70. Alternatively, should the analog data key
not be pre-stored, it can be developed using one of a number
of mechanisms, two of which are shown in FIG. 9. In one, the
microprocessor 22 would write the data key on the magnetic
mass storage medium as at step 72 and then next read the data
key as at step 74 in order to generate an analog signal repre-
sentation of the data key. In another, as at step 71, the digital
version of the data key received from the CPU would be
converted using appropriate digital to analog circuitry to an
analog signal representation which would in turn be appro-
priately sampled. The data key would then next be stored as a
digital sample thereof as in step 70. Should a digital data key
be used, it is only necessary that the microprocessor 22 store
the digital data key as at step 76 in the compare register of the
re-configurable logic device. It should be understood that

US 9,176,775 B2

15

depending upon the particular structures desired to be
included for each re-configurable logic device, the data key
may reside in either or all of these components, it merely
being preferable to ultimately get the appropriate digital for-
mat for the data key into the re-configurable logic device 21
for comparison and correlation.

Next, after the mass storage medium 26 reaches its starting
location as at 79, the target data stored on the mass storage
medium is continuously read as at step 78 to generate a
continuous stream signal representative of the target data.
Should an analog data key have been used, this analog data
key may then be correlated with an analog read of the target
data from the mass storage medium 26 as at step 80.

While the inventors contemplate that any of many prior art
comparators and correlation circuitry could be used, for
present purposes the inventors suggest that a digital sampling
of the analog signal and data key could be quite useful for
performing such comparison and calculating the correlation
coefficient, as explained below. It is noted that this analog
signal generated from reading the target data from mass stor-
age medium 26 may be conveniently generated by devices in
the prior art from the reading of either analog or digital data,
it not being necessary that a digital data key be used to match
digital target data as stored in mass storage medium 26. Alter-
natively, a correlation step 82 may be performed by matching
the digital data key with a stream of digital target data as read
from the mass storage medium 26. It should be noted that the
datakey may reflect the inclusion of approximate information
or the re-configurable logic device 21 may be programmed to
allow for same. Thus, correlating this with target data read
from the mass storage medium enables approximate match-
ing capabilities.

Referring back to FIG. 9, decision logic 84 next makes an
intelligent decision as to whether a portion of the target data
approximately matches or does not approximately match the
data key. Should a match be found, then the target data is
processed as at step 86 and the key data requested by the
search inquiry is sent to a disk cache 30, directly onto system
bus 34, or otherwise buffered or made available to a CPU 32,
network interface 36, or otherwise as shown in FIGS. 1, and
6-8. A logical step 88 is preferably included for returning to
the continuous reading of target data from the mass storage
medium 26, indicating something like a “do” loop. However,
it should be understood that this is a continuous process and
that target data is processed from the mass storage medium 26
as a stream and not in individualized chunks, frames, bytes, or
other predetermined portions of data. While this is not pre-
cluded, the present invention preferably allows a data key to
be in essence “slid” over a continuously varying target data
read signal such that there is no hesitation in reading target
data from the mass storage medium 26. There is no require-
ment to synchronize reading to the start or end of any multi-
bit data structure, or any other intermediate steps required to
be performed as the target data is compared continuously “on
the fly” as it is read from the mass storage medium 26.
Eventually, the data access is completed as at step 90 and the
process completed.

The inventors herein have preliminarily tested the present
invention in the analog domain and have generated prelimi-
nary data demonstrate its operability and effectiveness. In
particular, FIG. 10 is a graphical representation of a measured
analog signal output from a read/write head as the read/write
head reads a magnetic medium on which is stored a 10-bit
digital data key. As shown therein, there are peaks in the
analog signal which, as known in the art, represents the true
analog signal generated by a read/write head as target data is
read from a magnetic medium such as a hard disk. The scales

10

20

25

30

35

40

45

50

55

60

65

16

shown in FIG. 10 are volts along the vertical axis and tenths of
microseconds along the horizontal axis. As shown in FIG. 11,
an analog signal is generated, again by a read/write head, as
target data is read from a pseudo-random binary sequence
stored in a test portion of a magnetic medium. The read signal
does not provide an ideal square wave output when examined
at this level.

FIG. 12 is a graphical representation, with the horizontal
scale expanded, to more specifically illustrate the overlap
between approximately two bits of the 8-bit data key and the
corresponding two bits of target data found in the pseudo-
random binary sequence encoded at a different location on the
disk or magnetic medium.

FIG. 13 is a graphical representation of a correlation coef-
ficient calculated continuously as the comparison is made
between the data key and the continuous reading of target data
from the hard disk. This correlation coefficient is calculated
by sampling the analog signals at a high rate and using prior
art signal processing correlation techniques. One such
example may be found in Spatial Noise Phenomena of Lon-
gitudinal Magnetic Recording Media by Hoinville, Indeck
and Muller, IEEE Transactions on Magnetics, Volume 28, no.
6, November 1992, the disclosure of which is incorporated
herein by reference. A prior example of a reading, compari-
son, and coefficient calculation method and apparatus may be
found in one or more of one of the co-inventor’s prior patents,
such as U.S. Pat. No. 5,740,244, the disclosure of which is
incorporated herein by reference. The foregoing represent
examples of devices and methods which may be used to
implement the present invention, however, as mentioned else-
where herein, other similar devices and methods may be
likewise used and the purposes of the invention fulfilled.

As shown in FIG. 13, at approximately the point labeled
325, a distinct peak is noted at approximately 200 microsec-
onds which approaches 1 Volt, indicating a very close match
between the data key and the target data. FIG. 10 is also
illustrative of the opportunity for approximate matching
which is believed to be a powerful aspect of the invention.
Looking closely at FIG. 13, it is noted that there are other
lesser peaks that appear in the correlation coefficient. Thus, if
a threshold of 0.4 Volts were established as a decision point,
then not only the peak occurring which approaches 1 would
indicate a match or “hit” but also another five peaks would be
indicative of a “hit”. In this manner, a desired coefficient
value may be adjusted or predetermined as desired to suit
particular search parameters. For example, when searching
for a particular word in a large body of text, lower correlation
values may indicate the word is present but misspelled.

FIG. 14 depicts the continuous calculation of a correlation
coefficient between the same 8-bit data key but with a differ-
ent target data set. Again, a single match is picked up at
approximately 200 microseconds where the peak approaches
1 Volt. It is also noted that should a lower threshold be estab-
lished additional hits would also be located in the target data.

As previously mentioned, the invention is also capable of
performing sequence matching searches. With reference to
FIG. 15, a table 38 is generated by the re-configurable logic
device 20 to conduct such a search. Specifically, p; p, ps P4
represents the data key, p, or desired sequence to be searched.
While the data key of FIG. 15 only shows four characters, this
is for illustrative purposes only and it should be appreciated
that a typical data key size for sequence searching is on the
order of 500-1000, or even higher. The symbolst , t,,t; ...t
represent the target data, t, streaming off of the mass storage
medium 26. Again, while only nine (9) characters of such data
are shown, it should be appreciated that the typical size of the
mass storage medium 26 and thus the target data streaming

US 9,176,775 B2

17

off of it can typically be in the range of several billion char-
acters. The symbols d, ; represent the edit distance at position
i1n the data key and position j in the target data. It is assumed
that the data key is shorter relative to the target data, although
it is not required to be so. There may be a set of known
(constant) values for an additional row (d0,j) and column
(di,0) not shown in FIG. 15.

The values for di,j are computed by the re-configurable
logic device 20 using the fact that di,j is only a function of the
following characters: (1) pi, (2) tj, (3) di-1,j-1, (4) di-1,j, and
(5) dij-1. This is illustrated in FIG. 15 with respect to the
position d3,6 by showing its dependency on the values of d2,5
and d2,6 and d3,5 as well as p3 and t6. In one embodiment, the
values for di,j are computed as follows:

di j=max[di j-1+4;di-1j+A4;di-1 j-1+Bi j],

where A is a constant and Bi,j is a tabular function of pi and tj.
The form of the function, however, can be quite arbitrary. In
the biological literature, B is referred to as the scoring func-
tion. In the popular database searching program BLAST,
scores are only a function of whether or not pi=tj. In other
contexts, such as for amino acid sequences, the value of B is
dependent upon the specific characters in p and t.

FIG. 16 shows one embodiment of a systolic array archi-
tecture used by the invention to compute the values in the
table 38 of FIG. 15. The characters of the data key are stored
in the column of data registers 53, while the characters of the
target data streaming off of the mass storage medium 26 are
stored in the data shift registers 55. The values of di,j are
stored in the systolic cells 59 which themselves are preferably
FPGA’s.

The operation of the array of FIG. 16 will now be illustrated
using FIGS. 17 and 18. As shown in FIG. 17, in the first (i.e.,
combinational) part of the clock cycle of the system, the four
underlined values are computed. For example, the new value
d3,6 is shown to depend upon the same five values illustrated
earlier in FIG. 15. As shown in FIG. 18, in the second (i.e.,
latch) part of the clock cycle, all the characters in di,j and tj are
shifted one position to the right. A comparator 61 is posi-
tioned at each diagonal cell of the d array and determines
when the threshold has been exceeded.

The sequence matching operation will now be described
with reference to FIGS. 19-22 with respect to the following
example:

key=axbacs

target data=pqraxabcstvq

A=1

B=2, if i5j

B=-2ifi=j
From these variables, the table of FIG. 19 is generated by the
re-configurable logic device 20. Assuming a pre-determined
threshold of “8”, the re-configurable logic device 20 will
recognize a match at d6,9.

A portion of the synthesis arrays representing the values
present in FIGS. 16-18 for this example are shown in FIGS.
20-22, respectively. A match is identified by the re-config-
urable logic device 20 when the value on any row exceeds a
predetermined threshold. The threshold is set based on the
desired degree of similarity desired between the data key and
the target data stored in mass memory device 26. For
example, in the case of an exact match search, the data key
and target data must be identical. The match is then examined
by the CPU 32 via a traceback operation with the table of F1G.
19. Specifically a “snapshot” of the table is sent to the CPU 32
at a predetermined time interval to assist in traceback opera-
tions once a match is identified. The interval is preferably not
too often to overburden the CPU 32, but not so infrequent that

5

10

15

20

25

30

35

40

45

50

55

60

65

18

it takes a lot of time and processing to recreate the table. To
enable the CPU 32 to perform the traceback operation, it must
be ableto recreate the d array in the area surrounding the entry
in the table that exceeded the threshold. To support this
requirement, the systolic array can periodically output the
values of a complete column of d (“a snapshot™) to the CPU
32. This will enable the CPU 32 to recreate any required
portion of d greater than the index j of the snapshot.

Many matching applications operate on data representing a
two dimensional entity, such as an image. FIG. 23 illustrates
a systolic array 120 of re-configurable logic devices 20, pref-
erably FPGA’s, which enables matches on two dimensional
data. The individual cells 122 each hold one pixel of the image
for which the user is desiring to match (the image key) and
one pixel of the image being searched (the target image). For
images of sufficiently large size, it is likely they will not all fit
into one re-configurable logic chip 124. In such cases, a
candidate partitioning of cells to chips is shown with the
dashed lines, placing a rectangular subarray of cells in each
chip 124. The number of chip-to-chip connections can be
minimized by using a subarray that is square (i.e., same
number of cells in the vertical and horizontal dimension).
Other more complicated arrangements are shown below.

Loading of the target image into the array 120 is explained
using FIG. 24. Individual rows of each target image streaming
off the mass magnetic medium 26, shown generally as point
A, into the top row 130 of the array via the horizontal links
134 connecting each cell. With such a configuration, the top
row 130 operates as a data shift register. When the entire row
130 is loaded, the row is shifted down to the next row 132 via
the vertical links 136 shown in each column. Once the entire
image is loaded into the array, a comparison operation is
performed, which might require arbitrary communication
between neighboring cells. This is supported by both the
horizontal and vertical bi-directional links 126 and 128,
respectively, shown in FIG. 23.

Although for simplicity purposes the individual bi-direc-
tional links 126 and 128 are shown simply in FIGS. 23 and 24,
FIG. 28 shows the flexibility for implementing a much more
complex set of bi-directional links. As shown in FIG. 28, data
may be communicated from a mass storage medium 180 and
be input to a first row of a plurality of cells 182, with each cell
of' the first row having a direct link to the corresponding cell
184 below it in a second row of cells with a simple link 186,
and so on throughout the array 188 of cells. Overlying the
array 188 of cells is a connector web 190 which provides
direct connectivity between any two cells within the array
without the need for transmission through any intervening
cell. The output of the array 188 is represented by the sum of
the exit links 192 at the bottom of the array 188. It should be
understood that each cell in the array may be comprised of an
FPGA, each one of which preferably has a re-configurable
logic element corresponding to element 20 in FIG. 1, or any
one of which may have a re-configurable logic element 20 as
well as a data shift register 24, or any one of which may have
the entirety of re-configurable logic device 21.

One embodiment for the individual cells of array 120 is
illustrated in FIG. 25. The cell 140 includes a pixel register
142, LOADTi,j, which contains the pixels of the target image
currently being loaded into the array. A register, 144 CMPTi,j,
contains a copy of the pixel register 142 once the complete
target image has been loaded. This configuration enables the
last target image loaded to be compared in parallel with the
next target image being loaded, essentially establishing a
pipelined sequence of load, compare, load, compare, etc. A
register 146, CMPP4i,j, contains the pixels of the image key to
be used for comparison purposes, and the compare logic 148

US 9,176,775 B2

19

performs the matching operation between register 144 and
register 146. The compare logic 148 may include the ability to
communicate with the neighboring cells to the left, right, up,
and down shown generally as 150, 152, 154, and 156, respec-
tively, to allow for complex matching functions.

Another embodiment for the individual cells of array 120
of FIG. 23 isillustrated in FIG. 26. The cell 140 of FIG. 25 has
been augmented to support simultaneous loading of the
image key and the target image. In particular, the cell 160
includes the same components of the cell 140, but adds a new
register 162, LOADP1,j, which is used to load the image key,
and is operated in the same manner as register 142. With such
a configuration, if one disk read head of the mass storage
medium 26 is positioned above the image key, and a second
disk read head is positioned above the target image, they can
both flow off the disk in parallel and be concurrently loaded
into the array 160.

The operation performed within the compare logic block
can be any function that provides a judgment as to whether or
not there are significant differences between the target image
and the image key. An example includes cross-correlations
across the entire image or sub-regions of the image as
described in John C. Russ, The Image Processing Handbook,
3¢ edition, CRC Press 1999, which is incorporated herein by
reference.

The invention is also capable of performing data reduction
searching. Such searching involves matching as previously
described herein, but includes summarizing the matched data
in some aggregate form. For example, in the financial indus-
try, one might want to search financial information to identify
a minimum, maximum, and latest price of a stock. A re-
configurable logic device for computing such aggregate data
reductions is illustrated as 100 in FIG. 27. Here, a data shift
register 102 reads target data from a mass storage medium
containing stock price information. In the example shown,
three data reduction searches are shown, namely calculating
the minimum price, the maximum price, and the latest price.
As target data is fed into the data shift register 102, decision
logic computes the desired data reduction operation. In par-
ticular, the stock price is fed to a minimum price comparator
110 and maximum price comparator 112 and stored therein.
Each time a stock price is fed to comparator 110, it compares
the last stored stock price to the stock price currently being
fed to it and whichever is lower is stored in data register 104.
Likewise, each time a stock price is fed to comparator 112, it
compares the last stored stock price to the stock price cur-
rently being fed to it and whichever is higher is stored in data
register 106. In order to compute the latest price, the stock
price is fed into a data register 108 and the current time is fed
into a comparator 114. Each time a time value is fed into
comparator 114, it compares the last stored time with the
current time and which ever is greater is stored in data register
116. Then, at the end of the desired time interval for which a
calculation is being made, the latest price is determined.

While data reduction searching has been described with
respect to the very simple financial example shown in FIG.
27, it can be appreciated that the invention can perform data
reduction searching for a variety of different applications of
varying complexity requiring such functionality. The re-con-
figurable logic device need simply be configured with the
hardware and/or software to perform the necessary functions

The ability to perform data reduction searching at disk
rotational speeds cannot be under-estimated. One of the most
valuable aspects of information is its timeliness. People are
growing to expect things at Internet speed. Companies that
can quickly compute aggregate data reductions will clearly
have a competitive advantage over those that cannot.

25

40

45

55

20

Additionally, data processing operations other than search-
ing and reduction may also be implemented on the re-config-
urable logic device 21. As mentioned above, these operations
are referred to herein as data manipulation operations.
Examples of data manipulation operations or suboperations
thereof that can be performed on a PLD 20 include encryp-
tion, decryption, compression, and decompression opera-
tions. The preferred PLD 20 is an FPGA, even more prefer-
ably, a Xilinx FPGA. Further, still, any of these additional
operations can be combined with searching and/or reduction
operations in virtually any manner to form a multi-stage data
processing pipeline that provides additional speed, flexibility,
and security. The complexity of each operation is also virtu-
ally limitless, bounded only by the resources of the re-con-
figurable logic device 21 and the performance requirements
of a practitioner of the invention. Each processing operation
can be implemented in a single stage or in multiple stages, as
may be necessary.

FIG. 29 illustrates a multi-stage data processing pipeline
200 implemented within a re-configurable logic device 21 for
a system as shown in FIG. 1. At least one stage in the pipeline
200 is implemented on a PLD. Each stage 202 of the pipeline
200 is configured to process the data it receives according to
its intended functionality (e.g., compression, decompression,
encryption, decryption, etc.), and thereafter pass the pro-
cessed data either to the next stage in the pipeline, back to a
prior stage, or to the control processor 204. For example, the
first stage 202 in the pipeline 200 operates on data streaming
from a mass storage medium 26 and processes that data
according to its functionality. The data processed by stage 1 is
thereafter passed to stage 2 for further processing, and so on,
until stage N is reached. After the data has passed through all
appropriate stages 202, the result(s) of that processing can be
forwarded to the control processor 204 and/or the computer
over system bus 34.

This exemplary pipeline 200 of FIG. 29 can also be repli-
cated so that a separate pipeline 200 is associated with each
head on a disk system of the mass storage medium 26. Such a
design would improve performance associated with perform-
ing parallel processing operations on multiple data streams as
those streams are read out from the disk. If there are no other
performance bottlenecks in the system, it is expected that
throughput will increase linearly with the number of pipelines
200 employed.

It should be noted that each stage need not necessarily be
implemented on a PLD 20 within the re-configurable logic
device 21. For example, some stages may be implemented in
software on a processor (not shown) or dedicated hardware
(not shown) accessible to the PLLD 20. The exact design of
each stage and the decision to implement each stage on a PLD
20, in software, or in dedicated hardware such as an ASIC,
will be dependent upon the associated cost, performance, and
resources constraints applicable to each practitioner’s plans.
However, by employing pipelining entirely within a PLD 20
such as an FPGA, the processing throughput can be greatly
increased. Thus, for abalanced pipeline (i.e., a pipeline where
each stage has the same execution time) having no feedback
paths, the increase in data throughput is directly proportional
to the number of stages. Assuming no other bottlenecks, as
mentioned above, then with N stages, one can expect a
throughput increase of N. However, it should be noted that the
multi-stage pipeline may also utilize feedback between
stages, which may be desirable for certain operations (e.g.,
some encryption operations) to reduce implementation cost
or increase efficiency.

FIG. 30 illustrates an exemplary multistage pipeline 200
wherein the first four stages 202 comprise a decryption

US 9,176,775 B2

21

engine 210. The decryption engine 210 in this example oper-
ates to receive encrypted and compressed data streaming
from the mass storage medium 26. The fifth stage 202 serves
as adecompression engine to decompress the decrypted com-
pressed data exiting the decryption engine 210. The output of
the decompression engine is thus a stream of decrypted and
decompressed data that is ready to be processed by the stage
6 search engine. Control processor 204 controls each stage to
ensure proper flow therethrough. The control processor 204
preferably sets up parameters associated with each pipeline
stage (including, if appropriate, parameters for stages imple-
mented in software).

FIG. 31 depicts an example wherein a PLD is used as an
encryption engine for data either flowing from the system bus
34 to the mass storage medium 26 or data flowing from the
mass storage medium 26 to the system bus 34. FIG. 32 depicts
yet another exemplary pipeline wherein the pipeline 200 is
comprised of multiple processing engines (each engine com-
prising one or more stages), each of which can be either
activated by the control processor 204 such that the engine
performs its recited task on the data it receives or deactivated
by the control processor 204 such that is acts as a “pass
through” for the data it receives. Activation/deactivation of
the different engines will in turn depend on the functionality
desired for the pipeline. For example, if it is desired to per-
form a search operation on encrypted and compressed data
stored in the mass storage medium 26, the decryption engine
210, decompression engine 214, and search engine 218 can
each be activated while the encryption engine 212 and com-
pression engine 216 can each be deactivated. Similarly, if'it is
desired to store unencrypted data in the mass storage medium
in a compressed and encrypted format, the compression
engine 216 and the encryption engine 212 can be activated
while the decryption engine 210, the decompression engine
214, and the search engine 218 are each deactivated. As would
be understood by those of ordinary skill in the art upon read-
ing the teachings herein, other activation/deactivation com-
binations can be used depending on the desired functionality
for the pipeline 200.

Advanced encryption/decryption algorithms require a
complex set of calculations. Depending on the particular
algorithm employed, performing encryption/decryption at
disk speed requires that one employ advanced techniques to
keep up with the streaming data arriving at the encryption/
decryption engine. The PL.D-based architecture of the present
invention supports the implementation of not only relatively
simple encryption/decryption algorithms, but also complex
ones. Virtually any known encryption/decryption technique
can be used in the practice of the present invention, including
but not limited to DES, Triple DES, AES, etc. See Chodowiec
et al., “Fast Implementations of Secret-Key Block Ciphers
Using Mixed Inter- and Outer-Round Pipelining”, Proceed-
ings of International Symposium on FPGAs, pp. 94-102
(February 2001); FIPS 46-2, “Data Encryption Standard”,
revised version issued as FIPS 46-3, National Institute of
Standards and Technology (1999); ANSIx9.52-1998, “Triple
Data Encryption Algorithm Modes of Operation”, American
National Standards Institute (1998); FIPS 197, “Advanced
Encryption Standard”, National Institute of Standards and
Technology (2001), the entire disclosures of all of which are
incorporated herein by reference.

FIG. 33 illustrates an example of single stage encryption
that can be implemented with the present invention. The data
flow direction is top to bottom. A block of text (typically 64 or
128 bits) is loaded into input register 220 (by either control
processor 204 or CPU 32). Combinational logic (CL) 224
computes the cipher round, with the results of the round being

5

10

15

20

25

30

35

40

45

50

55

60

65

22

stored in output register 226. During intermediate rounds, the
contents of output register 226 are fed back through feedback
path 225 into the CL. 224 through MUX 222 to compute
subsequent rounds. Upon completion of the final round, the
data in the output register is the encrypted block and is ready
to be stored in the mass storage medium. This configuration
can also be used as a single stage decryption engine as well,
wherein the CL that computes the cipher is decryption logic
rather than encryption logic.

The throughput of the encryption engine shown in FIG. 33
can be improved through the use of pipelining techniques.
FIG. 34 depicts an example of a pipelined encryption engine
wherein there is pipelining within the combinational logic of
the round itself. Each CL 224 includes multiple intra-round
pipeline registers 228. The number of intra-round pipeline
registers 228 used can be variable and need not be limited to
two per CL. Further, the loops represented by the feedback
path 225 can be unrolled with multiple copies of the round CL,
224a, 224b, . . . , each with an inter-round pipeline register
230 therebetween. As with the number of intra-round regis-
ters 228 for each CL 224, the degree of unrolling (i.e., number
of round CLs 224) is also flexible. Relative to the encryption
engine of FIG. 33, it should be noted that the engine of FIG.
34 will consume more resources on the PLD 20, but will
provide a higher data throughput.

FIG. 35 illustrates an example of an encryption engine
wherein the rounds are completely unrolled. The feedback
paths 225 of FIGS. 33 and 34 are no longer necessary, and
data can continuously flow from the input register 220
through the pipeline of CLs 224 (each including multiple
intra-round pipeline registers 228 and separated by inter-
round pipeline registers 230) to the output register 226. Rela-
tive to the encryption engines of FIGS. 33 and 34, this con-
figuration provides the highest data throughput, but also
requires the greatest amount of resources in the re-config-
urable logic.

In many situations, data is retained in a data warehouse, as
shown in FIG. 36. The person or entity who owns the data
warehouse (the actual hardware and related database technol-
ogy on which data resides) is often not the same person or
entity who owns the actual data stored therein. For example,
if Party A (a data warehouser) owns a data warehouse and
offers data warehousing service to Party B (a data owner who
is to use Party A’s data warehouse to physically store data),
then the data owner has a legitimate concern about the third
parties who may have access to the data stored in the data
warehouser’s warehouse. That is, the data warehouser con-
trols physical access to the data, but it is the data owner who
wants to control who may physically access the data through
an access gateway, as shown in FIG. 36. In such cases, it is
conventional for the data owner’s data to be stored in the data
warehouse in an encrypted format, and the data owner retains
control over the distribution of any decryption algorithm(s)
and/or key(s) for the stored data. That way, the risk of unau-
thorized third parties gaining access to the unencrypted for-
mat of the data owner’s data is reduced. In such an arrange-
ment, the data warehouser is not provided with access to an
unencrypted version of the data owner’s stored data.

Ifthe data owner wishes to communicate all or a portion of
its stored encrypted data from the data warehouse to Party C
via a network such as the Internet, that data can be protected
during delivery over the network via another form of encryp-
tion (e.g., different algorithm(s) and/or different decryption
key(s)). The data owner can then provide Party C with the
appropriate algorithm(s) and/or key(s) to decrypt the data. In
this manner, the data owner and the authorized third party are
the only two parties who have access to the decrypted (plain

US 9,176,775 B2

23
text) data. However, the authorized third party will not be able
to decrypt the data owner’s data that is still stored in the data
warehouse because that data will possess a different mode of
encryption than the data received.

Conventionally, the computations required to perform
encryption/decryption in data warehousing scenarios are per-
formed in software on computers owned and under the direct
control of the data warehouser. In such a situation, as shown
in FIG. 37, the plain text that is the output of the decryption
operation is stored in the main memory of the processor used
to perform the encryption/decryption operations. If this soft-
ware (or other software running on the processor) has been
compromised by a virus or other malware, the data owner
may lose control over the plain text data to an unknown party.
Thus, with conventional approaches, one or both of the data
warehouser and an unknown malware-related party has
access to the processor main memory, and therefore access to
the plain text form of the data owner’s data.

To improve upon this security shortcoming, the present
invention can be used to implement encryption and decryp-
tion on re-configurable logic device 21 (preferably within a
PLD 20) over which only the data owner has control, as
shown in FIG. 38. In FIG. 38, a decryption engine 3800 using
Key 1 and an encryption engine 3802 using Key 2 are imple-
mented on a PLD 20. The re-configurable logic device 21
remains under control of the data owner and preferably (al-
though it need not be the case) communicates with the data
store of the data warehouser over a network such as the
Internet to receive a stream 3806 of the data owner’s
encrypted data (wherein the stored data was previously
encrypted using Key 1). The decryption engine 3800 thus
operates to decrypt the data stream 3806 using Key 1. The
output 3804 of the decryption engine 3800 is the data owner’s
data in decrypted (or plain text) format. This data remains in
the secure memory of the PLD 20 or the secure on-board
memory. Because this secure memory is invisible and inac-
cessible to software which may have malware thereon, the
risk of losing control over the plain text data to “hackers™ is
virtually eliminated. Thereafter, the plain text data 3804 is
provided to encryption engine 3802, which encrypts data
3806 using Key 2. The output of the encryption engine 3802
is newly encrypted data 3808 that can be delivered to an
authorized third party data requester. Secure delivery of data
3808 over a network such as the Internet can be thus main-
tained. For the authorized third party data requester to inter-
pret data 3808, the data owner can provide that third party
with Key 2.

FIGS. 39(a) and () illustrate embodiments for this feature
of'the present invention. FIG. 39(a) illustrates a circuit board
3900 that could be installed in a computer server. PCI-X
connector 3916 serves to interface the board 3900 with the
server’s system bus 34 (not shown). A PLD 20 such as an
FPGA is implemented on board 3900. Within the FPGA,
three functions are preferably implemented: a firmware
socket 3908 that provides connection with the external envi-
ronment, a decryption engine 3904, and an encryption engine
3902. The FPGA preferably also communicates with on-
board memory 3906, which is connected only to the FPGA. A
preferred memory device for on-board memory 3906 is an
SRAM or a DRAM. The address space and existence of
memory 3906 is visible only to the FPGA. The FPGA is also
preferably connected to a disk controller 3912 (employing
SCSI, Fiber Channel, or the like) via a private PCI-X bus
3910. Disk connector 3914 preferably interfaces the disk
controller 3912 with mass storage medium 26 (not shown)
which can serve as the data warehouse. Disk controller 3912

40

45

55

24

and disk connector 3914 are off-the-shelf components, well
known in the art. Examples of manufacturers include Adaptec
and LSI.

To support normal read/write access to the mass storage
medium 26, the FPGA is preferably configured as a PCI-X to
PCI-X bridge that links the PCI-X connector 3916 with the
internal PCI-X bus 3910. These bridging operations are per-
formed within firmware socket 3908, the functionality of
which is known in the art. Communication pathways other
than PCI-X may be used, including but not limited to PCI-
Express, PCI, Infiniband, and IP.

To support the encryption/decryption functionality, data
streaming into the board 3900 from the mass storage medium
26 is fed into the decryption engine 3904. The plain text
output of the decryption engine 3904 can be stored in on-
board memory 3906 (FIG. 39(a), stored in memory internal to
the FPGA (FIG. 39(b), or some combination of the two.
Thereafter, the encryption engine 3902 encrypts the plain text
data that is stored in memory 3906, internal FPGA memory,
or some combination of the two, using a different key than
that used to decrypt the stored data. The choice of whether to
use on-board memory 3906 or internal FPGA memory will
depend upon a variety of considerations, including but not
limited to the available FPGA resources, the volume of data to
be decrypted/encrypted, the type of decryption/encryption
employed, and the desired throughput performance charac-
teristics.

During the time that the plain text is resident in the on-
board memory 3906 or in the internal FPGA memory, this
plain text data is not accessible to a processor accessing
motherboard bus 34 because there is no direct connection
between memory 3906 or internal FPGA memory and the
PCI-X connector 3916. Accordingly, memory 3906 and the
internal FPGA memory are not in the address space of such a
processor, meaning, by derivation, that memory 3906 and the
internal FPGA memory are not accessible by any malware
that may be present on that processor.

Moreover, it should be noted that the embodiments of
FIGS. 39(a) and (b) may also optionally include a search
engine (not shown) within the FPGA located between the
decryption engine 3904 and encryption engine 3902, thereby
allowing the data owner to deliver targeted subsets of the
stored data to the authorized third party data requester that fit
within the boundaries of the third party’s data request.

As discussed above, compression and decompression are
also valuable operations that can be performed in a PLD in
accordance with the techniques of the present invention. It is
common to compress data prior to storage in a mass storage
medium 26 (thereby conserving storage space), and then
decompress that data when reading it from the mass storage
medium for use by a processor. These conventional compres-
sion and decompression operations are typically performed in
software. A compression technique that is prevalently used is
the well-known Lempel-Ziv (.Z) compression. See Ziv etal.,
“A Universal Algorithm for Sequential Data Compression”,
IEEE Trans. Inform. Theory, IT-23(3): 337-343 (1977); Ziv et
al., “Compression of Individual Sequence via Variable Rate
Coding”, IEEE Trans. Inform. Theory, IT-24: 530-536
(1978), the entire disclosures of both of which are incorpo-
rated by reference herein. Furthermore, the PLD-based archi-
tecture of the present invention supports the deployment of
not only L.Z compression but also other compression tech-
niques. See Jung et al., “Efficient VLSI for Lempel-Ziv Com-
pression in Wireless Data Communication Networks”, IEEE
Trans. on VLSI Systems, 6(3): 475-483 (September 1998);
Ranganathan et al., “High-speed VLSI design for Lempel-
Ziv-based data compression”, IEEE Trans. Circuits Syst., 40:

US 9,176,775 B2

25

96-106 (February 1993); Pirsch et al, “VLSI Architectures for
Video Compression—A Survey”, Proceedings of the IEEE,
83(2): 220-246 (February 1995), the entire disclosures of all
of which are incorporated herein by reference. Examples of
compression techniques other than [.Z compression that can
be deployed with the present invention include, but are not
limited to, various lossless compression types such as Huft-
man encoding, dictionary techniques, and arithmetic com-
pression, and various known lossy compression techniques.

To improve the speed at which compressed data can be
searched, it will be valuable to also import the decompression
operation onto the PLD 20 that performs the searching,
thereby providing the decompression with the same speed
advantages as the PLD-based search operation. FIG. 40 illus-
trates this aspect of the present invention wherein a stream
4000 of compressed data is passed from the mass storage
medium 26 to a re-configurable logic device 21 on which a
decompression (expansion) engine 4002 and a search engine
4004 are implemented within a PLD 20. FIG. 41 illustrates a
preferred embodiment for this aspect of the invention. In FIG.
41, the FPGA 20 of board 3900 depicted in FIGS. 39(a) and
(b) implements the decompression engine 4002 and the
search engine 4004. As described in connection with FIGS.
39(a) and (b), the integrity of the plain text form of the stored
data (the decompressed data exiting the decompression
engine 4002) is preserved because it is stored only in on-
board memory 3906, internal FPGA memory, or some com-
bination of the two. FIG. 42 illustrates a preferred implemen-
tation for a compression operation, wherein the FPGA 20 of
board 3900 has a compression engine 4200 implemented
thereon, thereby allowing data coming from system bus 34 to
be stored in a compressed manner on mass storage medium
26. As should be understood, the FPGA 20 of board 3900 can
also be loaded with the decompression engine 4002, search
engine 4004, and compression engine 4200. In such a deploy-
ment, depending on the functionality desired of board 3900,
either the compression engine 4200 can be deactivated
(thereby resulting in a combined decompression/search func-
tionality) or the decompression engine 4002 and search
engine 4004 can both be deactivated (thereby resulting in a
compression functionality).

To configure FPGA 20 with the functionality of the present
invention, the flowchart of FIG. 43 is preferably followed.
First, code level logic 4300 for the desired processing engines
that defines both the operation of the engines and their inter-
action with each other is created. This code, preferably HDL
source code, can be created using standard programming
languages and techniques. As examples of an HDL, VHDL or
Verilog can be used. Thereafter, at step 4302, a synthesis tool
is used to convert the HDL source code 4300 into a gate level
description 4304 for the processing engines. A preferred syn-
thesis tool is the well-known Synplicity Pro software pro-
vided by Synplicity, and a preferred gate level description
4304 is an EDIF netlist. However, it should be noted that other
synthesis tools and gate level descriptions can be used. Next,
atstep 4306, a place and route tool is used to convert the EDIF
netlist 4304 into the template 4308 that is to be loaded into the
FPGA 20. A preferred place and route tool is the Xilinx ISE
toolset that includes functionality for mapping, timing analy-
sis, and output generation, as is known in the art. However,
other place and route tools can be used in the practice of the
present invention. The template 4308 is a bit configuration file
that can be loaded into the FPGA 20 through the FPGA’s
Joint Test Access Group (JTAG) multipin interface, as is
known in the art.

As mentioned above, templates 4308 for different process-
ing functionalities desired for the system can be pre-gener-

5

10

15

20

25

30

35

40

45

50

55

60

65

26

ated and stored for selective implementation on the FPGA.
For example, templates for different types of compression/
decompression, different types of encryption/decryption, dif-
ferent types of search operations, different types of data
reduction operations, or different combinations of the fore-
going can be pre-generated and stored by a computer system
for subsequent loading into the FPGA 20 when that function-
ality is needed.

Further still, performance characteristics such as through-

out and consumed chip resources can be pre-determined and
associated with each processing operation. Using these asso-
ciated parameters, an algorithm can be used to intelligently
select which template is optimal for a particular desired func-
tionality.
For example, such an algorithm could provide guidance as to
which of the encryption engines of FIGS. 33-35 is best suited
for a given application. The table below presents parameters
that can be used to model performance in accordance with the
encryption/decryption operations of the invention.

TABLE 1
Variable definitions.

Variable Definition

B size of a block (number of bits encrypted/decrypted at a
time)

R number of rounds in overall operation (encryption/
decryption)

L loop unrolling level, number of rounds concurrently
executing in loop-level pipelining (loop-level pipelining
depth)

P pipelining depth within each round

ferxp, L) achievable clock rate for given pipelining configuration

Terxp, L) period of clock = 1/f7 x(p, L)

I number of iterations required for each block = [R/L]

Az(p) chip resources required for a round with internal pipelining
depth p (including inter-round pipelining register)

Ay chip resources required for fixed components (e.g., input

register, mux., etc.)

The values for each of these parameters are readily known or
can be readily measured, as known in the art. If R=IL for an
integer I, the iterations for the encryption/decryption have
been evenly unrolled. If this is not the case, later pipeline
stages must have a pass-through capability, as the final result
would be computed inside the pipeline rather than at the end.

The throughput of a pipelined cipher engine is given by the
following expression:

B , L
Throughput= %

The chip resources for an FPGA are typically measured in
CLBs or slices, as is well-known. With re-configurable logic
other than FPGAs, the resources might be measured in other
units (e.g., chip area). In either event, the resources required
will be linear in the number of rounds supported in parallel.
Hence, the chip resources required for the engine is as fol-
lows:

Resources=4g+LAz(p)

The values for the parameters Throughput and Resources can
be determined in advance for each stored processing opera-
tion (or function f) that may be implemented in a stage of a
pipeline. Accordingly, a table can be created that relates each
processing operation or function with its corresponding val-
ues for Throughput and Resources.

US 9,176,775 B2

27

Accordingly, the specific template (which defines one or
more different processing operations) to be deployed on a
PLD can be tailored to the particular query or command
issued. An algorithm that balances Throughput and
Resources in a manner desired by a practitioner of the present
invention can be created to decide which candidate template
is best-suited for an application. Thus, a control processor 32
can compute the overall throughput and resources for a set of
functions as follows. The throughput for a set of functions is
the minimum throughput for each of the functions:

Throughput=Min(Throughputz,;, Throughputz, . . .
,Throughputz,)

The resources required to deploy a set of functions is the sum
of the resources required for each of the functions:

Resources=Resourcesz,+Resourcesz»+ . . . +Re-

SOUICESE,

Given several options for each function, the control processor
can then solve an optimization problem (or if desired a “near
optimization” problem). The optimization can be to deploy
the set of options for each function that maximizes the overall
throughput under the constraint that the required resources be
less than or equal to the available resources on the re-config-
urable logic, or the optimization can be to deploy the set of
options for each function that minimizes the required
resources under the constraint the that overall throughput not
fall below some specified minimum threshold. Techniques
for solving such optimization problems or near optimization
problems are well known in the art. Examples of such tech-
niques include, but are not limited to complete enumeration,
bounded search, genetic algorithms, greedy algorithms,
simulated annealing, etc.

The use of the inventive system to process data streaming
from a mass storage medium such as a disk drive system is a
powerful technique for processing stored data at high speeds.
Very large databases, however, typically span many disk cyl-
inders. Accordingly, delays may be encountered when data-
base files are written on tracks that have been placed on
non-contiguous disk cylinders. These delays are associated
with having to move the disk read/write head from its current
position over a data cylinder to a new data cylinder where the
file to be read from the disk continues. These delays increase
as the distance that the head must travel increases. Therefore,
for reading data that spans multiple data cylinders on the disk,
the flow of the data stream from the disk will be interrupted as
the head moves from cylinder to cylinder. With today’s disk
drives, these delays may be in the millisecond range. Thus,
these head movement delays (known in the art as “seek”
times) represent a potential performance bottleneck.

With standard contemporary disk systems, tracks 4400 are
laid out on the disk or sets of disk platters as cylinders 4402
that are concentric around central origin 4406, as shown in
FIGS. 44(a) and (b). F1G. 44(a) illustrates a rotatable planar
magnetic medium 4450 that serves as a storage device such as
a computer hard disk, wherein data is placed on the magnetic
medium 4450 in discrete, circular tracks 4400. In magnetic
recordings, each track 4400,, whereini may bea, b,c, ..., is
positioned at its own radius R, relative to the central origin
4406. Each track is radially separated from the next inner
track and the next outer track by a track-to-track spacing T.
The value of T is preferably uniform for each track-to-track
radial distance. However, this need not be the case. For a head
4404 to read or write data from track 4400,, the head 4404
must be positioned such that it resides over a point on the disk
that is R, from the origin 4406. As the disk rotates, the track
will pass under the head to allow for a read or write operation.

10

15

20

25

30

35

40

45

50

55

60

65

28

Disk drives typically utilize a direct overwrite approach, so
accurate radial placement of the head 4404 over the medium
4450 is critical for sustained error free use. In general, each
circular track 4400, is divided into about 150 roughly equal
contiguous arcs. FI1G. 44(a) depicts an example wherein each
track 4400, is divided into 8 uniform contiguous arcs 4460,
each arc 4460 spanning an angle of 6=2n/8. The arcs of
different tracks 4400 that span the same angle 6 comprise a
disk sector (or wedge) 4462, as known in the art.

These arcs 4460 contain several data sets 4464 (logical
blocks and physical sectors) that can be altered (rewritten).
Additionally, these arcs 4460 contain unalterable (fixed)
magnetically written markings 4466 (such as ABCD servo
bursts) that are used as a guide to place the head 4404 over the
data regions so that the signal strength from the magnetic
recording is maximized.

FIG. 44(b) is a block diagram view of a disk drive system
4470 with a cross-sectional view of several disks 4450 resid-
ing in the drive system. As shown in FIG. 44(b), many drives
systems 4470 utilize both sides of a disk 4450, and may
include several disks 4450 (or platters) that are concentrically
placed on a rotational device 4472 such as a spindle motor. In
such an arrangement, each disk surface (top surface 4452 and
bottom surface 4454) is accessed by a different head 4404.
The collection of circular tracks 4400 accessed by the sepa-
rate heads 4404 at a single radius R, is referred to as a “data
cylinder” 4402. A band of adjacent data cylinders is called a
zone.

Having separate cylinders 4402 requires the movement of
the disk head 4404 when going between cylinders 4402. To
move between cylinders 4402, the positioning system 4474
must appropriately move heads 4404 along line 4476, typi-
cally in increments of T. As one moves from inner cylinders to
outer cylinders, the circumference of the written track
increases. For example, with reference to FIG. 44(a), the
circumference of innermost track 4400, is 2nR,, and the
circumference of outermost track 4400, is 2nR ;. Given that
R, is greater than R, it likewise follows that the circumfer-
ence of track 4400, is greater than that of track 4400 ,. Given
these circumferential differences, different zones may be
defined to allow for different linear bit densities along the
track, thereby yielding more data sectors around the cylinder
4402 for larger radii than those yielded by using roughly
constant linear data densities.

To write data spanning one or more tracks 4400, the head
4404 must be repositioned by the positioning system 4474 to
another radius by at least the center-to-center distance of
adjacent tracks 4400. This motion requires mechanical set-
tling time (repositioning of the head 4404) and resynchroni-
zation time of the head 4404 to the cylinder 4402 (in time,
downtrack). When moving the head a relatively long distance
such as T, this settling time is significant. Together, these
times may take, on average, halfthe revolution of the cylinder
4402, which is typically several milliseconds when moving
from cylinder to cylinder. As mentioned above, this time
duration is often referred to as the “seek” time, and it can be
a major performance bottleneck. Due to this bottleneck, data
write/read bursts are generally limited to single tracks or
cylinders.

According to a novel and unique feature of the preferred
embodiment, a technique is used to reposition the head 4404
to accommodate tracks laid out as discontiguous arcs. In a
preferred embodiment, these discontiguous arcs are discon-
tiguous circular arcs arranged in a generally helical tracking
pattern on the disk 4450, and the head positioning system uses
servo patterns, such as ABCD servo bursts, already present in
conventional systems to appropriately position the head. This

US 9,176,775 B2

29

technique can provide for written bursts in excess of a track
and up to an entire zone, wherein a single zone may encom-
pass the entire disk. While other servo patterns are possible,
and are not excluded from the scope of this feature of the
invention, an example will be given using the conventional
ABCD system for servo patterns.

In contrast to conventional head motion where the goal of
the servo system is to position the head 4404 on a single radius
to provide a circular track 4400, this novel and unique posi-
tioning method, as shown in FIG. 45, aims to position the
head 4404 over a discrete arc 4500 in proportion to the angu-
lar position of the head 4404 around the disk 4450, thereby
accommodating a helical topology of the discontiguous arcs’
magnetic pattern on the disk 4450.

With reference to FIG. 45, consider a single revolution of a
disk 4450 uniformly divided into W wedges (or sectors) 4462,
wherein each wedge 4462 spans an angle of 2/W. W is the
total number of wedges 4462 that pass the head 4404 in a
single revolution of the disk. In FIG. 45, the head (not shown)
can be positioned at any point along the x-axis to the left of
origin 4406. Each wedge 4462 can be assigned a wedge
number w, wherein w can be any integer 1 through W. As the
disk 4450 spins, the radial displacement of the head 4404 will
be incremented an amount in proportion to the wedge num-
ber, w, by the linear ratio (W/W)*T, where T is the conven-
tional track-to-track (or cylinder-to-cylinder) distance or
some other distance.

As shown in FIG. 45, data will be written on the surface of
disk 4450 in a piece-wise fashion, preferably a piece-wise
helical fashion defined by a plurality of discontiguous circu-
lar arcs 4500. For each revolution of the disk in a preferred
embodiment, the head 4404 will be positioned to encounter
W discontiguous circular arcs 4500, each circular arc 4500
spanning an angle of 27/W. In the example of FIG. 45, W is
equalto 4. When it is stated that each arc 4500 is circular, what
is meant is that each arc 4500, possesses a substantially con-
stant curvature. In a preferred embodiment wherein W is
constant for all radii, each discontiguous arc 4500, will pos-
sess a circumference of 2aR,/W. The radius R, for each arc
4500, is preferably T/W greater than that of arc 4500,_, and is
preferably T/W less than that of arc 4500, ,. Thus, as noted
below, for each complete revolution of the disk 4450 in the
preferred embodiment, the head 4404 will effectively move a
distance equal to the conventional adjacent track-to-track
distance T. As can be seen in FIG. 45, the plurality of discrete
circular arcs 4500 define a generally helical or spiral pattern
on the disk 4450.

It should be noted that each radius R, can have its own W
value. In such cases, the discontiguous arcs 4500 may have
different circumferences and may span multiple angles from
the origin.

Each discontiguous arc 4500 will include an ABCD servo
pattern thereon like that shown in FIG. 44(a) for a contiguous
arc to ensure proper movement of the head 4404 from one arc
4500 to the next. Conventional servo systems have sufficient
bandwidth to step heads 4404 by these small amounts of T/W.

As part of this process, consider an example where the
read/write head 4404 is initially placed at position d,, relative
to central origin 4406 for the disk of FIG. 45. This initial
position can be R, the radial distance of the innermost arc
4500,. As the disk spins, for each revolution r, the radial
displacement D ofthe head 4404 will be positioned relative to
d, by an amount proportional to the wedge number w as
follows:

10

15

20

25

35

40

45

50

55

60

65

30

wT
D=—+d
w

wherein T is the conventional track-to-track (or cylinder-to-
cylinder) distance. In one full revolution, the head 4404 will
have radially moved exactly one full track-to-track distance T.
When r reaches 2, the head 4404 will have radially moved
exactly 2T.

FIG. 46 illustrates the process by which a disk drive system
4470 operates to read data from a disk 4450 in accordance
with this feature of the preferred embodiment. At step 4600,
the system senses the portion of the disk over which the head
resides. Preferably, this step is achieved at least in part by
sensing a servo pattern and reading a sector ID written on the
disk, as is known in the art. Thereafter, at step 4602, depend-
ing on the wedge number w of the disk wedge 4502 that this
portion corresponds to, the head is repositioned to D as each
new disk wedge 4502 is encountered by the head. Next, at step
4604, the head position is fine-tuned using the servo pattern
onthe arc 4500. Once the head is properly positioned, the data
is read from the disk at step 4606. The process then returns to
step 4600 as the disk continues to spin.

This feature of the invention allows for the seamless and
continuous operation of the head in read or write mode over
an entire zone, thus permitting the reading or writing of an
entire disk without incurring the delays associated with nor-
mal seek times. Thus, when used in combination with the
searching and processing techniques described above, a
searching/processing system can operate more efficiently,
without being stalled by seek time delays. However, it is
worth noting that this feature of the invention need not be used
in combination with the searching/processing techniques
described above. That is, this technique of using a helical
pattern to read and write data to and from magnetic data
storage disks can be used independently of the above-de-
scribed searching and processing features.

Another performance bottleneck occurs when a disk upon
which data is stored becomes fragmented. In general file
systems, the files are divided into number of fixed size seg-
ments (blocks) and these segments are stored on the disk. If
the file is very long, the segments might be stored at various
locations on the disk. As noted above, to access such a file the
disk head has to move from cylinder to cylinder slowing down
the file access. It would be better if the entire file is stored as
a single object, in a single cylinder or immediately adjacent
cylinders. However, this might not always be possible
because of the fragmentation of the disk over time. The
defragmentation of the disk usually involves moving all the
files to one end of the disk so that the new files can be
allocated contiguously on the other free end. Typically, such
a defragmentation takes a long time. Many attempts have
been made in the prior art to solve this problem. One well-
known technique is known as the binary buddy system. With
the binary buddy system, every request size for disk space is
rounded to the next power of 2. Thus, for a 2000 byte file, an
allocation request of 2048 (2'') is made. This process leads to
internal fragmentation.

In an effort to minimize these problems, disclosed herein is
atechnique where a file is divided into one or more segments,
wherein each segment is a power of 2. Thus, each file that is
not sized as an even power of 2 is represented as the sum of a
series of power of 2 segments.

In an embodiment wherein a minimum segment size is not
set, this technique for segmenting a file into blocks of
memory comprises: (1) if the file size is an even power of 2,

US 9,176,775 B2

31

requesting a block of storage space on the storage medium
equal to the file size, (2) if the file size is not an even power of
2, requesting a plurality of blocks of storage space on the
storage medium, each block having a size that is equal to a
power of 2, and (3) if the request is accepted, storing the data
file in a storage medium such as on a disk or in memory as one
or more data file segments in accordance with the request. In
a preferred version of this technique, the file size F can be
thought of in binary terms as F equals F, . . . F, F,. When the
file size is not an even power of 2, requesting blocks in storage
comprises requesting a total number n of blocks B, ... B,
equal to a total number of bits in F equal to 1, each block B,
corresponding to a different bit F, in F equal to 1 and having
a size of 2°. FIG. 47(a) illustrates an example of this process
for a file size F of 2500 bytes. As shown in FIG. 47(a), the
preferred sum of powers of 2 technique, wherein a minimum
segment size is not used, results in segment sizes of 2048
bytes (2'%), 256 bytes (2°), 128 bytes (2°), 64 bytes (2%) and 4
bytes (2%).

To avoid generating overly small segments, it is preferred
that a minimum segment size 2 be used. For example, the
minimum segment size can be 512 bytes (2°) (thus m is 2).
With this technique, when a minimum segment size is used,
dividing a file into a sum of powers of 2 size will result in the
smallest segment being at least equal to the minimum seg-
ment size. Accordingly, (1) if the file size is an even power of
2 and greater than or equal to 2™, then a block of storage space
is requested such that the block is equal to the file size, (2) if
the file size is less than 2™, then a block of storage space is
requested such that the block is equal to 2™, and (3) if the file
size is not an even power of 2 and greater than 2™, then a
plurality of blocks of storage space on the storage medium are
requested, each block having a size that is equal to a power of
2 and equal to or greater than 2.

FIG. 47(b) illustrates a preferred implementation of this
minimum segment feature, wherein the file size S is 2500
bytes. With this technique, it can be seen that the segment
sizes will be 2048 bytes (2'2), 512 bytes (2'°). In the preferred
implementation of FIG. 47(b), because at least one bit F, in
F,,_, through F, is equal to 1, then F becomes rounded up to a
new value R (which can be represented in binary as R,, . . .
R,R,). The value of R is chosen as the minimum value greater
than F for which the bits R,,,_, through R, are all equal to zero.
If the file size F was a different value such that all of the bits
F,,_, through F, are equal to zero, then the choice of blocks
would proceed as with FIG. 47(a). However, if at least one of
thebits F,,_, through F, is equal to one, then the procedure of
FIG. 47(b) using R is preferably followed.

As would be understood by those of ordinary skill in the art
upon reviewing the teachings herein, program logic to imple-
ment such a sum of powers of 2 file system, with either a
minimum segment size or without, can be readily developed.

With a sum of powers of 2 file system, the internal frag-
mentation is equal to conventional (usual) file systems, which
divide a file into segments of equal size, with the same mini-
mum segment size. FIG. 48 shows the wasted space due to
internal fragmentation in a buddy file system versus a usual
(conventional) system and a sum of powers of 2 file system.
When the minimum segment size is small, the wasted space is
substantial in the case of the buddy system, but it becomes
comparable to other systems as the minimum segment size
increases. As the number of small files dominate in many file
systems, the buddy system is often times not a suitable option.

FIG. 49 compares the total number of segments, for an
entire file, according to a usual file system and the sum of
powers of 2 file system. When the minimum segment size is
small, the sum of powers of 2 system produces significantly

25

30

35

40

45

55

32

fewer segments than the usual mechanism. FIG. 50 shows the
minimum, average and maximum number of segments per
file according to both file systems. Here again, the sum of
powers of 2 file system dominates and creates a low number
of segments. In other words, the sum of powers of 2 file
system leads to more contiguous files.

As such, the sum of powers of 2 file system is a good trade
off between the buddy system (where there is a lot of internal
fragmentation) and the usual file system (where there is less
internal fragmentation but potentially poor contiguity).

As a further refinement, it is preferred that a defragmenta-
tion algorithm be used with the sum of powers of 2 file system
to more greatly ensure contiguous space on the disk for an
allocation request. If a contiguous allocation cannot be satis-
fied, the defragmentation algorithm tries to free space so as to
satisfy the allocation request. This defragmentation algo-
rithm does not defragment the entire disk. Instead, it incre-
mentally defragments a portion of the disk to enable the new
allocation request to be satisfied in an incremental manner. A
preferred defragmentation algorithm for use with the sum of
powers of 2 file system is disclosed on pages 26-30 of the
paper Cholleti, Sharath, “Storage Allocation in Bounded
Time”, MS Thesis, Dept. of Computer Science and Engineer-
ing, Washington University, St. Louis, Mo. (December 2002),
available as Washington University technical report WUCSE-
2003-2, the entire disclosure of which is incorporated herein
by reference.

Pseudo code for the preferred partial defragmentation
algorithm, referred to herein as a “heap manager partial
defragmentation algorithm” is reproduced below:

1. Initialization()
forI=0toH-1
heapManager[i] = 0;/*empty heap*/
2. Allocate(S)
if there is a free block of size S
allocate the block of size S with the lowest address, A
UpdateHeapManager(S, A, “allocation”)
else search for a free block of size bigger than S in increasing order
of size
if found, select the block with the lowest address
split the block recursively until there is a block
of size S
select the block of size S with the lowest address,

UpdateHeapManager(S, A, “allocation”)
else
A = FindMinimallyOccupiedBlock(S) /*finds block to
relocate™/
Relocate(S, A) /*relocates the sub blocks from
block A*/
allocate the block with address A
UpdateHeapManager(S, A, “allocation”)
3. FindMinimallyOccupiedBlock(S)
find i such that heapManager[i] is minimum for i = 2H/S -1 to
H/S
return address A = i << log,S
4. Relocate(S, A)
subBlocks = FindSubBlocks(S, A);
for each SB € subBlocks
Deallocate(SB), VSB € subBlocks
5. Deallocate(extId)
find address A of bock extId and size S;
free the block;
UpdateHeapManager(S, A, “deallocation™);
6. UpdateHeapManager(S, A, type)
int maxLevel = log,H;
int level = log,S;
if type = “allocation”
int addr = A >> level;
if S > MinBlockSize
heapManager[addr] = S /*block is fully occupied*/
/*blocks above the allocation level*®/

US 9,176,775 B2

33

-continued

addr = A >> level;
for (i = level+1; i <= maxLevel;i++)
addr = addr >> 1;
heapManager[addr] = heapManager[addr] + S;
if type = “deallocation”
int addr = A >> level;
/*current block™®/
if § > MinBlockSize
heapManager[addr] =0
/*blocks above the deallocation level*/
addr = A >> level;
for (i = level+1; i <= maxLevel;i++)
addr = addr >> 1; //continuing from above addr
heapManager[addr] = heapManager[addr] - S;

Various changes and modifications to the present invention
would be apparent to those skilled in the art but yet which
would not depart from the spirit of the invention. The pre-
ferred embodiment describes an implementation of the inven-
tion but this description is intended to be merely illustrative.
Several alternatives have been also been above. For example,
all of the operations exemplified by the analog processing
have their equivalent counterparts in the digital domain. Thus,
approximate matching and correlation types of processing
can be done on the standard digital representation of the
analog bit patterns. This can also be achieved in a continuous
fashion using tailored digital logic, microprocessors and digi-
tal signal processors, or alternative combinations. It is there-
fore the inventors’ intention that the present invention be
limited solely by the scope of the claims appended hereto, and
their legal equivalents.

What is claimed is:

1. A data processing apparatus comprising:

a processing device for communicating with a computer
system, the computer system including a processor,
wherein the processing device comprises a re-config-
urable logic device configured to perform a plurality of
tasks, thereby freeing the processor to perform other
tasks;

wherein the re-configurable logic device is configured to
receive and process streaming data through a multi-
functional pipeline deployed on the re-configurable
logic device;

wherein the multi-functional pipeline comprises a plurality
of pipelined data processing engines, each pipelined
data processing engine being configured to (1) receive
streaming data and selectively perform a processing
operation on the received streaming data, and (2) be
responsive to a control instruction that defines whether
that pipelined data processing engine is an activated data
processing engine or a deactivated data processing
engine, wherein an activated data processing engine is
configured to perform the processing operation of that
activated data processing engine on streaming data
received thereby, and wherein a deactivated data pro-
cessing engine remains in the pipeline but does not per-
form the processing operation of that activated data pro-
cessing engine on streaming data received thereby, the
deactivated data processing engine thereby being con-
figured to act as a pass through, the multi-functional
pipeline thereby being configured to provide a plurality
of different pipeline functions in response to control
instructions that are configured to selectively activate
and deactivate the pipelined data processing engines,
each pipeline function being the combined functionality
of'each activated pipelined data processing engine in the
pipeline at a given time.

10

15

20

25

30

35

40

45

50

55

60

65

34

2. The apparatus of claim 1 wherein the activated data
processing engines in the pipeline are configured to perform
their respective processing operations simultaneously such
that, with respect to data streaming through the pipeline, a
downstream activated data processing engine operates on
streaming data that was previously processed by an upstream
activated data processing engine.

3. The apparatus of claim 2 wherein the pipelined data
processing engines comprise a decryption engine.

4. The apparatus of claim 3 wherein the pipelined data
processing engines further comprise a search engine.

5. The apparatus of claim 4 wherein the pipelined data
processing engines further comprise an encryption engine.

6. The apparatus of claim 5 wherein the pipelined data
processing engines further comprise a compression engine.

7. The apparatus of claim 6 wherein the pipelined data
processing engines further comprise a decompression engine.

8. The apparatus of claim 4 wherein, with respect to data
streaming through the pipeline, the search engine is down-
stream from the decryption engine; and

wherein the pipeline is further configured to receive control

instructions that are operative to activate the decryption
engine and the search engine such that the pipeline is
configured to provide a crypto-searching function on
encrypted data that streams through the pipeline.

9. The apparatus of claim 8 wherein the reconfigurable
logic device is further configured to store decrypted data from
the decryption engine only in a memory that is not accessible
to the processor, wherein the memory comprises a member of
the group consisting of (i) internal memory of the reconfig-
urable logic device that is inaccessible to the processor, (ii) a
memory device that is deployed on the processing device, the
memory device being inaccessible to the processor, and
wherein the reconfigurable logic device is also deployed on
the processing board, and (iii) a combination of the internal
memory and the memory device.

10. The apparatus of claim 3 wherein the pipelined data
processing engines further comprise an encryption engine;

wherein, with respect to data streaming through the pipe-

line, the encryption engine is downstream from the
decryption engine; and

wherein the pipeline is further configured to receive control

instructions that are operative to activate the decryption
engine and the encryption engine such that the pipeline
is configured to provide a trans-encryption function on
encrypted data that streams through the pipeline.

11. The apparatus of claim 10 wherein the reconfigurable
logic device is further configured to store decrypted data from
the decryption engine only in a memory that is not accessible
to the processor, wherein the memory comprises a member of
the group consisting of (i) internal memory of the reconfig-
urable logic device that is inaccessible to the processor, (ii) a
memory device that is deployed on the processing device, the
memory device being inaccessible to the processor, and
wherein the reconfigurable logic device is also deployed on
the processing board, and (iii) a combination of the internal
memory and the memory device.

12. The apparatus of claim 10 wherein the pipelined data
processing engines further comprise a search engine;

wherein, with respect to data streaming through the pipe-

line, the search engine is downstream from the decryp-
tion engine and upstream from the encryption engine;
and

wherein the pipeline is further configured to receive control

instructions that are operative to activate the decryption
engine, the search engine, and the encryption such that

US 9,176,775 B2

35

the pipeline is configured to provide a search-enabled
trans-encryption function on encrypted data that streams
through the pipeline.

13. The apparatus of claim 12 wherein the reconfigurable
logic device is further configured to store decrypted data from
the decryption engine only in a memory that is not accessible
to the processor, wherein the memory comprises a member of
the group consisting of (i) internal memory of the reconfig-
urable logic device that is inaccessible to the processor, (i) a
memory device that is deployed on the processing device, the
memory device being inaccessible to the processor, and
wherein the reconfigurable logic device is also deployed on
the processing board, and (iii) a combination of the internal
memory and the memory device.

14. The apparatus of claim 2 wherein the pipelined data
processing engines comprise an encryption engine.

15. The apparatus of claim 14 wherein the pipelined data
processing engines further comprise a search engine.

16. The apparatus of claim 1 further comprising a mass
storage medium, and wherein the pipeline is configured to
receive and process data streaming to and from the mass
storage medium.

17. The apparatus of claim 16 wherein the pipelined data
processing engines comprise a decompression engine and a
compression engine.

18. The apparatus of claim 16 wherein the pipelined data
processing engines comprise an encryption engine and a
decryption engine.

19. The apparatus of claim 1 further comprising the com-
puter system, and wherein the processing device is further
configured to communicate with the computer system over a
bus.

20. A data processing apparatus comprising:

a field programmable gate array (FPGA) for communicat-
ing with a computer system, the computer system
including a processor, wherein the FPGA is configured
to perform a plurality of tasks, thereby freeing the pro-
cessor to perform other tasks;

10

15

20

25

30

35

36

wherein the FPGA is configured to receive and process
streaming data through a multi-functional pipeline
deployed on the FPGA;

wherein the multi-functional pipeline comprises a plurality
of pipelined data processing engines, each pipelined
data processing engine being configured to (1) receive
streaming data and selectively perform a processing
operation on the received streaming data, and (2) be
responsive to a control instruction that defines whether
that pipelined data processing engine is an activated data
processing engine or a deactivated data processing
engine, wherein an activated data processing engine is
configured to perform the processing operation of that
activated data processing engine on streaming data
received thereby, and wherein a deactivated data pro-
cessing engine remains in the pipeline but does not per-
form the processing operation of that activated data pro-
cessing engine on streaming data received thereby, the
deactivated data processing engine thereby being con-
figured to act as a pass through, the multi-functional
pipeline thereby being configured to provide a plurality
of different pipeline functions in response to control
instructions that are configured to selectively activate
and deactivate the pipelined data processing engines,
each pipeline function being the combined functionality
of each activated pipelined data processing engine in the
pipeline at a given time.

21. The apparatus of claim 20 further comprising:

a data storage medium, wherein a plurality of data files are
stored in the data storage medium, each data file being
stored as a sequence of segments, each segment having
a size that is a power of 2;

the computer system; and

wherein the computer system is configured to (1) write the
data files to the data storage medium as the sequence of
segments, and (2) manage a flow of a plurality ofthe data
files to the FPGA for processing via the pipeline.

#* #* #* #* #*

